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Software Product Line 

• A Software Product Line (SPL) is a family of 
products designed to take advantage of their 
common features and specified variations 

• The ultimate goals is to mitigate production 
costs and improve the quality from the 
perspective of a customer. 
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Example: Linux Kernel 
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Feature Model 

 

 

Visual representation of software product line in 
tree format to facilitate reasoning and 
understanding. 
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Feature Model – Java Chat Model 
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Chat 

Output EncryptOR Encryption 

GUI CMD Caesar Reverse 

EncryptOR   
Caesar  Reverse 

Mandatory 

Optional 

Alternative 

Or 

• Each feature could associate with quality attributes 
such as response time and cost 
• A valid feature set/product = {Chat, Output, GUI} 



Two Main Objectives 

Given a feature model, we want to generate 
products that: 

• Conform to feature model 
– Select a set of features that complies with the feature 

model 

• Satisfy user preferences  
– Optimizes the quality attributes (e.g., response time, 

cost) of products according to user preferences. 
 

This is known as Optimal Feature Selection 
Problem 
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Challenge 1: Exponentially Many 
Configurations 
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Challenge 2: Conflicting User 
Preferences  

• Example:  

– Maximize number of features 

– Minimize Costs 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 

 

 

 

9 



Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 

 

 

 

10 



Feature Model  Logical Constraints 
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Table: Constraints of JCS 

c(1) Chat 

c(2) Output  Chat 

c(3) EncryptOR  Chat 

c(4) Encryption  Chat 

c(5) (GUI  CMD)  
Output 

c(6)  (GUI  CMD) 

c(7) (Caesar  Reverse)  
Encryption 

c(8)  
Cross Tree 
Constraint 

EncryptOR   (Caesar 
 Reverse)  
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Multiple Objectives 

• Correctness:  
minimize the number of violated constraints of the 
feature model. 

• Richness of features:  
minimize the number of features that are not selected. 

• Cost:  
minimize the total cost. 

• Feature used before:  
minimize the number of features that have not been 
used before. 

• Defects:  
minimize the number of known defects. 
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Multi-objective Optimization Problem 
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• A k-objective optimization problem: 
 Minimize Obj(F) = (Obj1(F), Obj2(F), …,Objk(F)) (1) 

 

• Obj(F1) is smaller than Obj(F2)  or F1 dominates 
F2 in Equation (1), if 
i: Obji(F1)  Obji(F2)  j: Objj (F1)  Objj(F2)   

where i, j  {1,…,k}       
  

• F  is called a Pareto-optimal solution if it is not 
dominated by any other F’.                                                                

 



Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Evolutionary Algorithm (EA) 
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Initial 
Population  

Generation Mutation 

Selection Crossover no yes 

Finding optimal solutions based on mechanisms  
inspired by biologic evolution 



Examples of Multi-objective EA 

• Examples: IBEA, NSGA-II, ssNSGA-II, MOCell 

• Based on the dominating criteria they used 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Key Insight 

• Some features are always used or never used 
at all (Prune them) 

• The crossover and mutation operation is 
generic – they are not adaptive to optimal 
feature selection (Feedback-directed EA) 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Prune Common and Dead Features 

• Common Features: 
Feature set shared by 
all derived products 
({Chat, Output}) 

•  SAT( fea f ) 

• Dead Features : 
Feature that must not 
be used by all derived 
products 

•  SAT(fea  f ) 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Feedback-directed EA 

• What is the feedback?  
They are selected features that do not comply 
to the feature model. 

• We use feedback to improve solutions of next 
generation 

• Feedback is incorporated by means of 
crossover and mutation operation 
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Mutation 
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Feedback-Directed Mutation 
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Evaluation: Benchmark 

• SPLOT (Software Product Line Online Tools) 

– An online repository of product line 

• LVAT (Linux Variability Analysis Tools) 

– Reversed Engineered from big projects like Linux 
kernel and eCos operating system. 
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Evaluation: Metrics 

• Percentage of Correctness (%Correct):  
The solutions that are valid. 

 

• Hypervolume: 

 Hypervolume of the solution set is the volume 
of the region that is dominated by solution. 
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Evaluation: Objectives 

• Correctness:  
minimize the number of violated constraints of the 
feature model. 

• Richness of features:  
minimize the number of features that are not selected. 

• Cost:  
minimize the total cost. 

• Feature used before:  
minimize the number of features that have not been 
used before. 

• Defects:  
minimize the number of known defects. 
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Evaluation: SPLOT 
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• IBEA outperformed other methods 

• F+P is better than U+P;  U+P is better than U 
• State-of-the-art [1,2]: Somewhere between U+P and U 
 
[1]A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE, 
2013. 
[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in 
software product lines. In ICSE, pages 492-501, 2013. 

25000 evaluations 



Evaluation: SPLOT 
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•For U+P for IBEA, it achieved 46% of correctness for 3.25 
hours. 
•For F+P for IBEA, it achieved 100% of correctness by just 6.9 
seconds. 

 

25000 evaluations 



Evaluation: Linux Kernel  
(Seeding Method) 

• Linux Kernel has 6888 features 

• IBEA with two objectives is used to generate 
the seed. 

• U+P spends a total 4 hours of execution time 
for 36 correct solutions. 

• F+P uses less than 40 seconds to get 36 
correct solutions 
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Conclusion 

• Generality - Our technique  improves common 
EAs in optimal feature selection. 

• Faster Convergence – Our technique allows 
efficient and effective findings of optimal 
features. 
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Thank you! 

36 

Email: ttianhuat@gmail.com 

mailto:ttianhuat@gmail.com
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Feedback-Directed Crossover 
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P2 :  c(8): (GUI (5)  CMD (6)  GUI2 (7))  Output 



Example: Linux Kernel 

• ~6,000,000 Lines of C code 

• Highly configurable 

  > 10,000 configuration options!  
(x86, 64bit, …) 

  Most source code is “optional” 
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Feedback-Directed Crossover 

40 

0 1 1 0 1 1 

0 1 2 3 4 5 

0 1 2 3 4 5 

Chat 

Output 
EncryptOR 

(0) 
Encryption 

 (1) 

GUI 
 (2) 

CMD 
 (3) 

Caesar 
 (4) 

Reverse 
 (5) 

EncryptOR   
Caesar  Reverse 

Mandatory 

Optional 

Alternative 

Or 

0 0 1 0 0 0 

0 0 0 0 0 0 

P1 

C1 

P2 

P1:         EncryptOR (0)   Caesar (4)  Reverse (5) 

P2 :        GUI (2)  CMD (3)  Output  



Evaluation: Feature Attribute 

• Cost  R:  
the cost incurred to use the feature. 

• Used_Before  {0,1}:  
whether the feature has been used before. 

• Defects  Z:  
the number of defects known in the feature. 
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