
Optimizing Selection of Competing
Features via Feedback-Directed

Evolutionary Algorithms

 Presenter: Tian Huat Tan

Tian Huat Tan1 , Yinxing Xue2 , Manman Chen3 ,

Jun Sun1 , Yang Liu2 , Jin Song Dong3

1Singapore University of Technology and Design,

2Nanyang Technological University,
3Singapore National University of Singapore

1

Software Product Line

• A Software Product Line (SPL) is a family of
products designed to take advantage of their
common features and specified variations

• The ultimate goals is to mitigate production
costs and improve the quality from the
perspective of a customer.

2

Example: Linux Kernel

3

Linux
Kernel

Feature Model

Visual representation of software product line in
tree format to facilitate reasoning and
understanding.

4

Feature Model – Java Chat Model

5

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

• Each feature could associate with quality attributes
such as response time and cost
• A valid feature set/product = {Chat, Output, GUI}

Two Main Objectives

Given a feature model, we want to generate
products that:

• Conform to feature model
– Select a set of features that complies with the feature

model

• Satisfy user preferences
– Optimizes the quality attributes (e.g., response time,

cost) of products according to user preferences.

This is known as Optimal Feature Selection
Problem

6

Challenge 1: Exponentially Many
Configurations

7

Challenge 2: Conflicting User
Preferences

• Example:

– Maximize number of features

– Minimize Costs

8

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

9

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

10

Feature Model Logical Constraints

11

Table: Constraints of JCS

c(1) Chat

c(2) Output Chat

c(3) EncryptOR Chat

c(4) Encryption Chat

c(5) (GUI CMD)
Output

c(6) (GUI CMD)

c(7) (Caesar Reverse)
Encryption

c(8)
Cross Tree
Constraint

EncryptOR (Caesar
 Reverse)

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

Feature Model Logical Constraints

12

Table: Constraints of JCS

c(1) Chat

c(2) Output Chat

c(3) EncryptOR Chat

c(4) Encryption Chat

c(5) (GUI CMD)
Output

c(6) (GUI CMD)

c(7) (Caesar Reverse)
Encryption

c(8)
Cross Tree
Constraint

EncryptOR (Caesar
 Reverse)

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

Feature Model Logical Constraints

13

Table: Constraints of JCS

c(1) Chat

c(2) Output Chat

c(3) EncryptOR Chat

c(4) Encryption Chat

c(5) (GUI CMD)
Output

c(6) (GUI CMD)

c(7) (Caesar Reverse)
Encryption

c(8)
Cross Tree
Constraint

EncryptOR (Caesar
 Reverse)

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

14

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

15

Multiple Objectives

• Correctness:
minimize the number of violated constraints of the
feature model.

• Richness of features:
minimize the number of features that are not selected.

• Cost:
minimize the total cost.

• Feature used before:
minimize the number of features that have not been
used before.

• Defects:
minimize the number of known defects.

16

Multi-objective Optimization Problem

17

• A k-objective optimization problem:
 Minimize Obj(F) = (Obj1(F), Obj2(F), …,Objk(F)) (1)

• Obj(F1) is smaller than Obj(F2) or F1 dominates
F2 in Equation (1), if
i: Obji(F1) Obji(F2) j: Objj (F1) Objj(F2)

where i, j {1,…,k}

• F is called a Pareto-optimal solution if it is not
dominated by any other F’.

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

18

Evolutionary Algorithm (EA)

19

Initial
Population

Generation Mutation

Selection Crossover no yes

Finding optimal solutions based on mechanisms
inspired by biologic evolution

Examples of Multi-objective EA

• Examples: IBEA, NSGA-II, ssNSGA-II, MOCell

• Based on the dominating criteria they used

20

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

21

Key Insight

• Some features are always used or never used
at all (Prune them)

• The crossover and mutation operation is
generic – they are not adaptive to optimal
feature selection (Feedback-directed EA)

22

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

23

Prune Common and Dead Features

• Common Features:
Feature set shared by
all derived products
({Chat, Output})

• SAT(fea f)

• Dead Features :
Feature that must not
be used by all derived
products

• SAT(fea f)

24

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

Approach

• Feature model Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

25

Feedback-directed EA

• What is the feedback?
They are selected features that do not comply
to the feature model.

• We use feedback to improve solutions of next
generation

• Feedback is incorporated by means of
crossover and mutation operation

26

Mutation

27

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

0 1 1 0 1 1

0 1 2 3 4 5

Mutation Rate 0.01

{Encryption, GUI, Caesar, Reverse}

P

 C 0 1 0 0 1 1

Feedback-Directed Mutation

28

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

0 1 1 0 1 1

 EncryptOR (0) Caesar (4) Reverse (5)

0 1 2 3 4 5

Mutation Rate 0.0000001
Error Mutation Rate 1

{Encryption, GUI, Caesar, Reverse}

Evaluation: Benchmark

• SPLOT (Software Product Line Online Tools)

– An online repository of product line

• LVAT (Linux Variability Analysis Tools)

– Reversed Engineered from big projects like Linux
kernel and eCos operating system.

29

Evaluation: Metrics

• Percentage of Correctness (%Correct):
The solutions that are valid.

• Hypervolume:

 Hypervolume of the solution set is the volume
of the region that is dominated by solution.

30

Evaluation: Objectives

• Correctness:
minimize the number of violated constraints of the
feature model.

• Richness of features:
minimize the number of features that are not selected.

• Cost:
minimize the total cost.

• Feature used before:
minimize the number of features that have not been
used before.

• Defects:
minimize the number of known defects.

31

Evaluation: SPLOT

32

96

27
31 34

78

22 24 21

54

16 14
18

0

20

40

60

80

100

120

IBEA NSGAII ssNSGAII MOCell

F+P U+P U

%

JCS

• IBEA outperformed other methods

• F+P is better than U+P; U+P is better than U
• State-of-the-art [1,2]: Somewhere between U+P and U

[1]A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE,
2013.
[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in
software product lines. In ICSE, pages 492-501, 2013.

25000 evaluations

Evaluation: SPLOT

33

100

12 15 14

0 0 0 0 0 0 0 0
0

20

40

60

80

100

120

IBEA NSGAII ssNSGAII MOCell

F+P U+P U

E-shop

%

•For U+P for IBEA, it achieved 46% of correctness for 3.25
hours.
•For F+P for IBEA, it achieved 100% of correctness by just 6.9
seconds.

25000 evaluations

Evaluation: Linux Kernel
(Seeding Method)

• Linux Kernel has 6888 features

• IBEA with two objectives is used to generate
the seed.

• U+P spends a total 4 hours of execution time
for 36 correct solutions.

• F+P uses less than 40 seconds to get 36
correct solutions

34

Conclusion

• Generality - Our technique improves common
EAs in optimal feature selection.

• Faster Convergence – Our technique allows
efficient and effective findings of optimal
features.

35

Thank you!

36

Email: ttianhuat@gmail.com

mailto:ttianhuat@gmail.com

37

Feedback-Directed Crossover

38

0 0 0 1 0 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9

P1

0 0 0 0 0 1 0 0 0 0 C1

0 0 0 0 0 0 0 0 0 0 P2

P1: c(13): Encryption_OR (4) Caesar (8) Reverse (9)

P2 : c(8): (GUI (5) CMD (6) GUI2 (7)) Output

Example: Linux Kernel

• ~6,000,000 Lines of C code

• Highly configurable

 > 10,000 configuration options!
(x86, 64bit, …)

 Most source code is “optional”

39

Feedback-Directed Crossover

40

0 1 1 0 1 1

0 1 2 3 4 5

0 1 2 3 4 5

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR
Caesar Reverse

Mandatory

Optional

Alternative

Or

0 0 1 0 0 0

0 0 0 0 0 0

P1

C1

P2

P1: EncryptOR (0) Caesar (4) Reverse (5)

P2 : GUI (2) CMD (3) Output

Evaluation: Feature Attribute

• Cost R:
the cost incurred to use the feature.

• Used_Before {0,1}:
whether the feature has been used before.

• Defects Z:
the number of defects known in the feature.

41

