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Software Product Line

e A Software Product Line (SPL) is a family of
products designed to take advantage of their
common features and specified variations

* The ultimate goals is to mitigate production
costs and improve the quality from the
perspective of a customer.



Example: Linux Kernel




Feature Model

Visual representation of software product line in
tree format to facilitate reasoning and
understanding.



Feature Model — Java Chat Model

Chat
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* Each feature could associate with quality attributes
such as response time and cost
* A valid feature set/product = {Chat, Output, GUI}



Two Main Objectives

Given a feature model, we want to generate
products that:

e Conform to feature model

— Select a set of features that complies with the feature
model

e Satisfy user preferences

— Optimizes the quality attributes (e.g., response time,
cost) of products according to user preferences.

This is known as Optimal Feature Selection
Problem



Challenge 1: Exponentially Many
Configurations

more configurations than estimated

atoms in the universe




Challenge 2: Conflicting User
Preferences
* Example:

— Maximize number of features
— Minimize Costs



Approach

* Feature model = Logical Constraints

* Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)



Approach

* Feature model = Logical Constraints
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Feature Model = Logical Constraints

Table: Constraints of JCS

Chat c(1) Chat
& c(2) Output < Chat
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Cross Tree v Reverse)
Constraint
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Feature Model = Logical Constraints

Table: Constraints of JCS
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Feature Model = Logical Constraints

Table: Constraints of JCS

« L
c(2 Output < Chat
Output [EncryptOR] [ Encryption ] (2) P
X W a c(3) EncryptOR = Chat
[ GUI ] [ CMD ] [ e ] [ Reverse ] c(4) Encryption = Chat
c(5) (GUI v CMD) &
i Output
EncryptOR P L IV'andatc"’\//\Alternatlve P
Caesar v Reverse | Optional /. Or c(6) — (GUI A CMD)
c(7) (Caesar v Reverse) <
Encryption
c(8) EncryptOR <> (Caesar

Cross Tree v Reverse)
Constraint
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Approach

* Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)
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* Multi-objective

Approach
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Multiple Objectives

Correctness:
minimize the number of violated constraints of the
feature model.

Richness of features:
minimize the number of features that are not selected.

Cost:
minimize the total cost.

Feature used before:
minimize the number of features that have not been
used before.

Defects:
minimize the number of known defects.
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Multi-objective Optimization Problem

* A k-objective optimization problem:
Minimize Obj(F) = (Obj,(F), Obj,(F), ...,0bj.(F)) (1)

Obj(F,) is smaller than Obj(F,) or F, dominates
F,in Equation (1), if

Vi: Obj(F,) < Obj{F,) A Jj: Obj; (F,) < Obj(F,)

where i, j € {1,...,k}

* F is called a Pareto-optimal solution if it is not
dominated by any other F.
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Approach

Evolutionary Algorithm
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Evolutionary Algorithm (EA)

Finding optimal solutions based on mechanisms

inspired by biologic evolution

Initial
Population

yes

Generation

€

nNo

Mutation

>

Selection

Crossover
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Examples of Multi-objective EA

 Examples: IBEA, NSGA-II, ssNSGA-II, MOCell
* Based on the dominating criteria they used
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Approach

(Pruning + Feedback Directed)
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Key Insight

 Some features are always used or never used
at all (Prune them)

* The crossover and mutation operation is
generic — they are not adaptive to optimal
feature selection (Feedback-directed EA)
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Approach

* Feature model = Logical Constraints

* Multi-objective Evolutionary Algorithm
‘Pruning + Feccback Directed)
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Prune Common and Dead Features

e Common Features:
Feature set shared by

Chat

all derived products | Output | | EncryptoR | | Encryption |
({Chat, Output})
o —/SAT(fea/\—,f) [ GUI J [ CMD J [ Caesar ] [ Reverse J
* Dead Features : EncryptOR < B
Feature that must not CaesarvReverse | oetenal 7 o

be used by all derived
products

« - SAT(fea /f)
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Approach

Feedback Directed
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Feedback-directed EA

* What is the feedback?
They are selected features that do not comply
to the feature model.

 We use feedback to improve solutions of next
generation

* Feedback is incorporated by means of
crossover and mutation operation
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Mutation

Chat
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{Encryption, GUI, Caesar, Reverse}

Mutation Rate 0.01
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Feedback-Directed Mutation

{Encryption, GUI, Caesar, Reverse}

Chat 0 1 2
[ Outm&mryption J . 11110 -
e (0) (1)
[ GUI ] [ CMD ] [ Caesar ] [ Reverse ] xEncryptOR( 0)< Caesar (4) v Reverse (5)
(2) (3) (4) (5)
EncryptOR < g (e Mutation Rate 0.0000001

Caesar v Reverse || optional " or Error Mutation Rate 1
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Evaluation: Benchmark

* SPLOT (Software Product Line Online Tools)

— An online repository of product line
e LVAT (Linux Variability Analysis Tools)

— Reversed Engineered from big projects like Linux
kernel and eCos operating system.
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Evaluation: Metrics

* Percentage of Correctness (%Correct):
The solutions that are valid.

* Hypervolume:

Hypervolume of the solution set is the volume
of the region that is dominated by solution.
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Evaluation: Objectives

Correctness:
minimize the number of violated constraints of the
feature model.

Richness of features:
minimize the number of features that are not selected.

Cost:
minimize the total cost.

Feature used before:
minimize the number of features that have not been
used before.

Defects:
minimize the number of known defects.
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F+P: Feedback-directed + Pruning
U+P: Undirected + Pruning
U: Undirected

96
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® IBEA outperformed other methods

* F+P is better than U+P; U+P is better than U
* State-of-the-art [1,2]: Somewhere between U+P and U

[1]A.S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE,

2013.

[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in
software product lines. In ICSE, pages 492-501, 2013.
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Evaluation: SPLOT

% 25000 evaluations
100
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*For U+P for IBEA, it achieved 46% of correctness for 3.25
hours.

*For F+P for IBEA, it achieved 100% of correctness by just 6.9
seconds.
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Evaluation: Linux Kernel
(Seeding Method)

Linux Kernel has 6888 features

IBEA with two objectives is used to generate
the seed.

U+P spends a total 4 hours of execution time
for 36 correct solutions.

F+P uses less than 40 seconds to get 36
correct solutions
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Conclusion

* Generality - Our technique improves common
EAs in optimal feature selection.

* Faster Convergence — Our technique allows
efficient and effective findings of optimal
features.



Thank you!

Email: ttianhuat@gmail.com
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Feedback-Directed Crossover

3 4 5
P10001-10

CC o0/ 0/0 0 O 0| 0
P, 0 0 0| 0 O 0| 0

P,: X ¢(13): Encryption_OR (4) <> Caesar (8) v Reverse (9)

P, : X ¢(8): (GUI (5) v CMD (6) v GUI2 (7)) <> Output
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Example: Linux Kernel

e ~6,000,000 Lines of C code

* Highly configurable

> 10,000 configuration options!
(x86, 64bit, ...)

(d Most source code is “optiona

IH
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Feedback-Directed Crossover

Chat
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P;: X EncryptOR (0) <> Caesar (4) v Reverse (5)
P,: % GUI (2) v CMD (3) < Output
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Evaluation: Feature Attribute

e Cost € R:

the cost incurred to use the feature.
 Used Before € {0,1}:

whether the feature has been used before.

e Defects e Z:
the number of defects known in the feature.
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