
Optimizing Selection of Competing
Features via Feedback-Directed

Evolutionary Algorithms

 Presenter: Tian Huat Tan

Tian Huat Tan1 , Yinxing Xue2 , Manman Chen3 ,

Jun Sun1 , Yang Liu2 , Jin Song Dong3

1Singapore University of Technology and Design,

2Nanyang Technological University,
3Singapore National University of Singapore

1

Software Product Line

• A Software Product Line (SPL) is a family of
products designed to take advantage of their
common features and specified variations

• The ultimate goals is to mitigate production
costs and improve the quality from the
perspective of a customer.

2

Example: Linux Kernel

3

Linux
Kernel

Feature Model

Visual representation of software product line in
tree format to facilitate reasoning and
understanding.

4

Feature Model – Java Chat Model

5

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

• Each feature could associate with quality attributes
such as response time and cost
• A valid feature set/product = {Chat, Output, GUI}

Two Main Objectives

Given a feature model, we want to generate
products that:

• Conform to feature model
– Select a set of features that complies with the feature

model

• Satisfy user preferences
– Optimizes the quality attributes (e.g., response time,

cost) of products according to user preferences.

This is known as Optimal Feature Selection
Problem

6

Challenge 1: Exponentially Many
Configurations

7

Challenge 2: Conflicting User
Preferences

• Example:

– Maximize number of features

– Minimize Costs

8

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

9

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

10

Feature Model  Logical Constraints

11

Table: Constraints of JCS

c(1) Chat

c(2) Output  Chat

c(3) EncryptOR  Chat

c(4) Encryption  Chat

c(5) (GUI  CMD) 
Output

c(6)  (GUI  CMD)

c(7) (Caesar  Reverse) 
Encryption

c(8)
Cross Tree
Constraint

EncryptOR  (Caesar
 Reverse)

 

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

Feature Model  Logical Constraints

12

Table: Constraints of JCS

c(1) Chat

c(2) Output  Chat

c(3) EncryptOR  Chat

c(4) Encryption  Chat

c(5) (GUI  CMD) 
Output

c(6)  (GUI  CMD)

c(7) (Caesar  Reverse) 
Encryption

c(8)
Cross Tree
Constraint

EncryptOR  (Caesar
 Reverse)

 

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

Feature Model  Logical Constraints

13

Table: Constraints of JCS

c(1) Chat

c(2) Output  Chat

c(3) EncryptOR  Chat

c(4) Encryption  Chat

c(5) (GUI  CMD) 
Output

c(6)  (GUI  CMD)

c(7) (Caesar  Reverse) 
Encryption

c(8)
Cross Tree
Constraint

EncryptOR  (Caesar
 Reverse)

 

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

14

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

15

Multiple Objectives

• Correctness:
minimize the number of violated constraints of the
feature model.

• Richness of features:
minimize the number of features that are not selected.

• Cost:
minimize the total cost.

• Feature used before:
minimize the number of features that have not been
used before.

• Defects:
minimize the number of known defects.

16

Multi-objective Optimization Problem

17

• A k-objective optimization problem:
 Minimize Obj(F) = (Obj1(F), Obj2(F), …,Objk(F)) (1)

• Obj(F1) is smaller than Obj(F2) or F1 dominates
F2 in Equation (1), if
i: Obji(F1)  Obji(F2)  j: Objj (F1)  Objj(F2)

where i, j  {1,…,k}

• F is called a Pareto-optimal solution if it is not
dominated by any other F’.

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

18

Evolutionary Algorithm (EA)

19

Initial
Population

Generation Mutation

Selection Crossover no yes

Finding optimal solutions based on mechanisms
inspired by biologic evolution

Examples of Multi-objective EA

• Examples: IBEA, NSGA-II, ssNSGA-II, MOCell

• Based on the dominating criteria they used

20

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

21

Key Insight

• Some features are always used or never used
at all (Prune them)

• The crossover and mutation operation is
generic – they are not adaptive to optimal
feature selection (Feedback-directed EA)

22

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

23

Prune Common and Dead Features

• Common Features:
Feature set shared by
all derived products
({Chat, Output})

•  SAT(fea f)

• Dead Features :
Feature that must not
be used by all derived
products

•  SAT(fea  f)

24

Chat

Output EncryptOR Encryption

GUI CMD Caesar Reverse

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

Approach

• Feature model  Logical Constraints

• Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

25

Feedback-directed EA

• What is the feedback?
They are selected features that do not comply
to the feature model.

• We use feedback to improve solutions of next
generation

• Feedback is incorporated by means of
crossover and mutation operation

26

Mutation

27

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

0 1 1 0 1 1

0 1 2 3 4 5

Mutation Rate 0.01

{Encryption, GUI, Caesar, Reverse}

P

 C 0 1 0 0 1 1

Feedback-Directed Mutation

28

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

0 1 1 0 1 1

 EncryptOR (0)  Caesar (4)  Reverse (5)

0 1 2 3 4 5

Mutation Rate 0.0000001
Error Mutation Rate 1

{Encryption, GUI, Caesar, Reverse}

Evaluation: Benchmark

• SPLOT (Software Product Line Online Tools)

– An online repository of product line

• LVAT (Linux Variability Analysis Tools)

– Reversed Engineered from big projects like Linux
kernel and eCos operating system.

29

Evaluation: Metrics

• Percentage of Correctness (%Correct):
The solutions that are valid.

• Hypervolume:

 Hypervolume of the solution set is the volume
of the region that is dominated by solution.

30

Evaluation: Objectives

• Correctness:
minimize the number of violated constraints of the
feature model.

• Richness of features:
minimize the number of features that are not selected.

• Cost:
minimize the total cost.

• Feature used before:
minimize the number of features that have not been
used before.

• Defects:
minimize the number of known defects.

31

Evaluation: SPLOT

32

96

27
31 34

78

22 24 21

54

16 14
18

0

20

40

60

80

100

120

IBEA NSGAII ssNSGAII MOCell

F+P U+P U

%

JCS

• IBEA outperformed other methods

• F+P is better than U+P; U+P is better than U
• State-of-the-art [1,2]: Somewhere between U+P and U

[1]A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE,
2013.
[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in
software product lines. In ICSE, pages 492-501, 2013.

25000 evaluations

Evaluation: SPLOT

33

100

12 15 14

0 0 0 0 0 0 0 0
0

20

40

60

80

100

120

IBEA NSGAII ssNSGAII MOCell

F+P U+P U

E-shop

%

•For U+P for IBEA, it achieved 46% of correctness for 3.25
hours.
•For F+P for IBEA, it achieved 100% of correctness by just 6.9
seconds.

25000 evaluations

Evaluation: Linux Kernel
(Seeding Method)

• Linux Kernel has 6888 features

• IBEA with two objectives is used to generate
the seed.

• U+P spends a total 4 hours of execution time
for 36 correct solutions.

• F+P uses less than 40 seconds to get 36
correct solutions

34

Conclusion

• Generality - Our technique improves common
EAs in optimal feature selection.

• Faster Convergence – Our technique allows
efficient and effective findings of optimal
features.

35

Thank you!

36

Email: ttianhuat@gmail.com

mailto:ttianhuat@gmail.com

37

Feedback-Directed Crossover

38

0 0 0 1 0 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9

P1

0 0 0 0 0 1 0 0 0 0 C1

0 0 0 0 0 0 0 0 0 0 P2

P1:  c(13): Encryption_OR (4)  Caesar (8)  Reverse (9)

P2 :  c(8): (GUI (5)  CMD (6)  GUI2 (7))  Output

Example: Linux Kernel

• ~6,000,000 Lines of C code

• Highly configurable

 > 10,000 configuration options!
(x86, 64bit, …)

 Most source code is “optional”

39

Feedback-Directed Crossover

40

0 1 1 0 1 1

0 1 2 3 4 5

0 1 2 3 4 5

Chat

Output
EncryptOR

(0)
Encryption

 (1)

GUI
 (2)

CMD
 (3)

Caesar
 (4)

Reverse
 (5)

EncryptOR 
Caesar  Reverse

Mandatory

Optional

Alternative

Or

0 0 1 0 0 0

0 0 0 0 0 0

P1

C1

P2

P1: EncryptOR (0)  Caesar (4)  Reverse (5)

P2 : GUI (2)  CMD (3)  Output

Evaluation: Feature Attribute

• Cost  R:
the cost incurred to use the feature.

• Used_Before  {0,1}:
whether the feature has been used before.

• Defects  Z:
the number of defects known in the feature.

41

