Optimizing Selection of Competing

Features via Feedback-Directed
Evolutionary Algorithms

Presenter: Tian Huat Tan

Tian Huat Tan!, Yinxing Xue? , Manman Chen?3,
Jun Sunt, Yang Liu?, Jin Song Dong?

1Singapore University of Technology and Design,
Nanyang Technological University,
3Singapore National University of Singapore



Software Product Line

e A Software Product Line (SPL) is a family of
products designed to take advantage of their
common features and specified variations

* The ultimate goals is to mitigate production
costs and improve the quality from the
perspective of a customer.



Example: Linux Kernel




Feature Model

Visual representation of software product line in
tree format to facilitate reasoning and
understanding.



Feature Model — Java Chat Model

Chat

[ Output ] [EncryptOR] [ Encryption ]

Cou | [owo | [ comsor | [ evere |

l Mandatory/\AIternative

EncryptOR &
Caesar v Reverse LOptional SO\ or

* Each feature could associate with quality attributes
such as response time and cost
* A valid feature set/product = {Chat, Output, GUI}



Two Main Objectives

Given a feature model, we want to generate
products that:

e Conform to feature model

— Select a set of features that complies with the feature
model

e Satisfy user preferences

— Optimizes the quality attributes (e.g., response time,
cost) of products according to user preferences.

This is known as Optimal Feature Selection
Problem



Challenge 1: Exponentially Many
Configurations

more configurations than estimated

atoms in the universe




Challenge 2: Conflicting User
Preferences
* Example:

— Maximize number of features
— Minimize Costs



Approach

* Feature model = Logical Constraints

* Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)



Approach

* Feature model = Logical Constraints

10



Feature Model = Logical Constraints

Table: Constraints of JCS

Chat c(1) Chat
& c(2) Output < Chat
[ Output ] [EncryptOR] [ Encryption ]
@ m— a c(3) EncryptOR = Chat
[ GUI ] [ CMD ] [ Caesar ] [ Reverse ] C(4) Encryptlon:>Chat
c(5) (GUI v CMD) <
i Output
EncryptOR PN L Mandatory/\AIternatlve P
Caesar Vv Reverse LOptionaI N Or C(6) —|(GU|/\C|\/|D)
c(7) (Caesar v Reverse) <
Encryption
c(8) EncryptOR <> (Caesar

Cross Tree v Reverse)
Constraint

11



Feature Model = Logical Constraints

Table: Constraints of JCS

Chat c(1) Chat
«— L —
c(2 Output < Chat
[ Output ] [EncryptOR] [ Encryption ] ( ) P
= — E c(3) EncryptOR = Chat
[ GUI ] [ CMD ] [ Caesar ] [ Reverse ] C(4) Encryptlon:>Chat
c(5) (GUI v CMD) <
i Output
EncryptOR PN L Mandatory/\AIternatlve P
Caesar Vv Reverse LOptionaI N Or C(6) —|(GU|/\C|\/|D)
c(7) (Caesar v Reverse) <
Encryption
c(8) EncryptOR <> (Caesar

Cross Tree v Reverse)
Constraint

12



Feature Model = Logical Constraints

Table: Constraints of JCS

« L
c(2 Output < Chat
Output [EncryptOR] [ Encryption ] (2) P
X W a c(3) EncryptOR = Chat
[ GUI ] [ CMD ] [ e ] [ Reverse ] c(4) Encryption = Chat
c(5) (GUI v CMD) &
i Output
EncryptOR P L IV'andatc"’\//\Alternatlve P
Caesar v Reverse | Optional /. Or c(6) — (GUI A CMD)
c(7) (Caesar v Reverse) <
Encryption
c(8) EncryptOR <> (Caesar

Cross Tree v Reverse)
Constraint

13



Approach

* Multi-objective Evolutionary Algorithm
(Pruning + Feedback Directed)

14



* Multi-objective

Approach

15



Multiple Objectives

Correctness:
minimize the number of violated constraints of the
feature model.

Richness of features:
minimize the number of features that are not selected.

Cost:
minimize the total cost.

Feature used before:
minimize the number of features that have not been
used before.

Defects:
minimize the number of known defects.

16



Multi-objective Optimization Problem

* A k-objective optimization problem:
Minimize Obj(F) = (Obj,(F), Obj,(F), ...,0bj.(F)) (1)

Obj(F,) is smaller than Obj(F,) or F, dominates
F,in Equation (1), if

Vi: Obj(F,) < Obj{F,) A Jj: Obj; (F,) < Obj(F,)

where i, j € {1,...,k}

* F is called a Pareto-optimal solution if it is not
dominated by any other F.

17



Approach

Evolutionary Algorithm

18



Evolutionary Algorithm (EA)

Finding optimal solutions based on mechanisms

inspired by biologic evolution

Initial
Population

yes

Generation

€

nNo

Mutation

>

Selection

Crossover

19



Examples of Multi-objective EA

 Examples: IBEA, NSGA-II, ssNSGA-II, MOCell
* Based on the dominating criteria they used

20



Approach

(Pruning + Feedback Directed)

21



Key Insight

 Some features are always used or never used
at all (Prune them)

* The crossover and mutation operation is
generic — they are not adaptive to optimal
feature selection (Feedback-directed EA)

22



Approach

* Feature model = Logical Constraints

* Multi-objective Evolutionary Algorithm
‘Pruning + Feccback Directed)

23



Prune Common and Dead Features

e Common Features:
Feature set shared by

Chat

all derived products | Output | | EncryptoR | | Encryption |
({Chat, Output})
o —/SAT(fea/\—,f) [ GUI J [ CMD J [ Caesar ] [ Reverse J
* Dead Features : EncryptOR < B
Feature that must not CaesarvReverse | oetenal 7 o

be used by all derived
products

« - SAT(fea /f)

24



Approach

Feedback Directed

25



Feedback-directed EA

* What is the feedback?
They are selected features that do not comply
to the feature model.

 We use feedback to improve solutions of next
generation

* Feedback is incorporated by means of
crossover and mutation operation

26



Mutation

Chat

g
EncryptOR ] Encryption
{ Output M (0) [ Q) |

GUI CMD
L) L
EncryptOR &
Caesar v Reverse

{ Caesar ] [ Reverse
(4) (5)

]

L Mandatory/\AIternative

(LOptionaI N, Or

C

{Encryption, GUI, Caesar, Reverse}

Mutation Rate 0.01

27



Feedback-Directed Mutation

{Encryption, GUI, Caesar, Reverse}

Chat 0 1 2
[ Outm&mryption J . 11110 -
e (0) (1)
[ GUI ] [ CMD ] [ Caesar ] [ Reverse ] xEncryptOR( 0)< Caesar (4) v Reverse (5)
(2) (3) (4) (5)
EncryptOR < g (e Mutation Rate 0.0000001

Caesar v Reverse || optional " or Error Mutation Rate 1

28



Evaluation: Benchmark

* SPLOT (Software Product Line Online Tools)

— An online repository of product line
e LVAT (Linux Variability Analysis Tools)

— Reversed Engineered from big projects like Linux
kernel and eCos operating system.

29



Evaluation: Metrics

* Percentage of Correctness (%Correct):
The solutions that are valid.

* Hypervolume:

Hypervolume of the solution set is the volume
of the region that is dominated by solution.

30



Evaluation: Objectives

Correctness:
minimize the number of violated constraints of the
feature model.

Richness of features:
minimize the number of features that are not selected.

Cost:
minimize the total cost.

Feature used before:
minimize the number of features that have not been
used before.

Defects:
minimize the number of known defects.

31



%

100
80
60

ICS

20

Eva I u atio n : S P LOT 25000 evaluations

F+P: Feedback-directed + Pruning
U+P: Undirected + Pruning
U: Undirected

96

IBEA NSGAII ssNSGAII MOCell

BF+P mU+P mU

® IBEA outperformed other methods

* F+P is better than U+P; U+P is better than U
* State-of-the-art [1,2]: Somewhere between U+P and U

[1]A.S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE,

2013.

[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in
software product lines. In ICSE, pages 492-501, 2013.

32



Evaluation: SPLOT

% 25000 evaluations
100

100
80
E-shop
60
40

20 12 15 14
0 o 0 o - 0 o 0 o
. ] ]

IBEA NSGAII ssNSGAII MOCell

EF+P mU+P mU

*For U+P for IBEA, it achieved 46% of correctness for 3.25
hours.

*For F+P for IBEA, it achieved 100% of correctness by just 6.9
seconds.

33



Evaluation: Linux Kernel
(Seeding Method)

Linux Kernel has 6888 features

IBEA with two objectives is used to generate
the seed.

U+P spends a total 4 hours of execution time
for 36 correct solutions.

F+P uses less than 40 seconds to get 36
correct solutions

34



Conclusion

* Generality - Our technique improves common
EAs in optimal feature selection.

* Faster Convergence — Our technique allows
efficient and effective findings of optimal
features.



Thank you!

Email: ttianhuat@gmail.com



mailto:ttianhuat@gmail.com

[IJ High Resolution Timer Support

P S e S R S S S S T S S T S S S S S S S S N S S S T T ST ST NS TS ST S ESE S

<Select>




Feedback-Directed Crossover

3 4 5
P10001-10

CC o0/ 0/0 0 O 0| 0
P, 0 0 0| 0 O 0| 0

P,: X ¢(13): Encryption_OR (4) <> Caesar (8) v Reverse (9)

P, : X ¢(8): (GUI (5) v CMD (6) v GUI2 (7)) <> Output

38



Example: Linux Kernel

e ~6,000,000 Lines of C code

* Highly configurable

> 10,000 configuration options!
(x86, 64bit, ...)

(d Most source code is “optiona

IH

39



Feedback-Directed Crossover

Chat

[ Output J [EncryptOR] [ Encryption ]

(0) 1

)

EncryptOR &
Caesar v Reverse

[ Caesar ] [ Reverse
(4) (5)

]

L Mandatory/ \Alternative

(LOptionaI /-\ Or

0
0 1 2 3 4 5

P;: X EncryptOR (0) <> Caesar (4) v Reverse (5)
P,: % GUI (2) v CMD (3) < Output

40



Evaluation: Feature Attribute

e Cost € R:

the cost incurred to use the feature.
 Used Before € {0,1}:

whether the feature has been used before.

e Defects e Z:
the number of defects known in the feature.

41



