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Software Product Line 

• A Software Product Line (SPL) is a family of 
products designed to take advantage of their 
common features and specified variations 

• The ultimate goals is to mitigate production 
costs and improve the quality from the 
perspective of a customer. 
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Example: Linux Kernel 
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Visual representation of software product line in 
tree format to facilitate reasoning and 
understanding. 
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Feature Model – Java Chat Model 
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Chat 
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Or 

• Each feature could associate with quality attributes 
such as response time and cost 
• A valid feature set/product = {Chat, Output, GUI} 



Two Main Objectives 

Given a feature model, we want to generate 
products that: 

• Conform to feature model 
– Select a set of features that complies with the feature 

model 

• Satisfy user preferences  
– Optimizes the quality attributes (e.g., response time, 

cost) of products according to user preferences. 
 

This is known as Optimal Feature Selection 
Problem 
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Challenge 1: Exponentially Many 
Configurations 
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Challenge 2: Conflicting User 
Preferences  

• Example:  

– Maximize number of features 

– Minimize Costs 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Feature Model  Logical Constraints 
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Table: Constraints of JCS 

c(1) Chat 

c(2) Output  Chat 

c(3) EncryptOR  Chat 

c(4) Encryption  Chat 

c(5) (GUI  CMD)  
Output 

c(6)  (GUI  CMD) 

c(7) (Caesar  Reverse)  
Encryption 

c(8)  
Cross Tree 
Constraint 

EncryptOR   (Caesar 
 Reverse)  

   
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Feature Model  Logical Constraints 

13 

Table: Constraints of JCS 

c(1) Chat 

c(2) Output  Chat 

c(3) EncryptOR  Chat 

c(4) Encryption  Chat 

c(5) (GUI  CMD)  
Output 

c(6)  (GUI  CMD) 

c(7) (Caesar  Reverse)  
Encryption 

c(8)  
Cross Tree 
Constraint 

EncryptOR   (Caesar 
 Reverse)  

   

Chat 

Output EncryptOR Encryption 

GUI CMD Caesar Reverse 

EncryptOR   
Caesar  Reverse 

Mandatory 

Optional 

Alternative 

Or 



Approach 

• Feature model  Logical Constraints 
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Multiple Objectives 

• Correctness:  
minimize the number of violated constraints of the 
feature model. 

• Richness of features:  
minimize the number of features that are not selected. 

• Cost:  
minimize the total cost. 

• Feature used before:  
minimize the number of features that have not been 
used before. 

• Defects:  
minimize the number of known defects. 
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Multi-objective Optimization Problem 
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• A k-objective optimization problem: 
 Minimize Obj(F) = (Obj1(F), Obj2(F), …,Objk(F)) (1) 

 

• Obj(F1) is smaller than Obj(F2)  or F1 dominates 
F2 in Equation (1), if 
i: Obji(F1)  Obji(F2)  j: Objj (F1)  Objj(F2)   

where i, j  {1,…,k}       
  

• F  is called a Pareto-optimal solution if it is not 
dominated by any other F’.                                                                

 



Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Evolutionary Algorithm (EA) 
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Initial 
Population  

Generation Mutation 

Selection Crossover no yes 

Finding optimal solutions based on mechanisms  
inspired by biologic evolution 



Examples of Multi-objective EA 

• Examples: IBEA, NSGA-II, ssNSGA-II, MOCell 

• Based on the dominating criteria they used 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Key Insight 

• Some features are always used or never used 
at all (Prune them) 

• The crossover and mutation operation is 
generic – they are not adaptive to optimal 
feature selection (Feedback-directed EA) 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Prune Common and Dead Features 

• Common Features: 
Feature set shared by 
all derived products 
({Chat, Output}) 

•  SAT( fea f ) 

• Dead Features : 
Feature that must not 
be used by all derived 
products 

•  SAT(fea  f ) 
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Approach 

• Feature model  Logical Constraints 

• Multi-objective Evolutionary Algorithm 
(Pruning + Feedback Directed) 
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Feedback-directed EA 

• What is the feedback?  
They are selected features that do not comply 
to the feature model. 

• We use feedback to improve solutions of next 
generation 

• Feedback is incorporated by means of 
crossover and mutation operation 
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Mutation 
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Feedback-Directed Mutation 
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Evaluation: Benchmark 

• SPLOT (Software Product Line Online Tools) 

– An online repository of product line 

• LVAT (Linux Variability Analysis Tools) 

– Reversed Engineered from big projects like Linux 
kernel and eCos operating system. 
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Evaluation: Metrics 

• Percentage of Correctness (%Correct):  
The solutions that are valid. 

 

• Hypervolume: 

 Hypervolume of the solution set is the volume 
of the region that is dominated by solution. 
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Evaluation: Objectives 

• Correctness:  
minimize the number of violated constraints of the 
feature model. 

• Richness of features:  
minimize the number of features that are not selected. 

• Cost:  
minimize the total cost. 

• Feature used before:  
minimize the number of features that have not been 
used before. 

• Defects:  
minimize the number of known defects. 
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Evaluation: SPLOT 
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• IBEA outperformed other methods 

• F+P is better than U+P;  U+P is better than U 
• State-of-the-art [1,2]: Somewhere between U+P and U 
 
[1]A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line conguration: A straw to break the camel's back. In ASE, 
2013. 
[2]A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based software engineering: a case study in 
software product lines. In ICSE, pages 492-501, 2013. 

25000 evaluations 



Evaluation: SPLOT 
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•For U+P for IBEA, it achieved 46% of correctness for 3.25 
hours. 
•For F+P for IBEA, it achieved 100% of correctness by just 6.9 
seconds. 
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Evaluation: Linux Kernel  
(Seeding Method) 

• Linux Kernel has 6888 features 

• IBEA with two objectives is used to generate 
the seed. 

• U+P spends a total 4 hours of execution time 
for 36 correct solutions. 

• F+P uses less than 40 seconds to get 36 
correct solutions 
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Conclusion 

• Generality - Our technique  improves common 
EAs in optimal feature selection. 

• Faster Convergence – Our technique allows 
efficient and effective findings of optimal 
features. 
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Thank you! 
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Email: ttianhuat@gmail.com 

mailto:ttianhuat@gmail.com
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Feedback-Directed Crossover 
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Example: Linux Kernel 

• ~6,000,000 Lines of C code 

• Highly configurable 

  > 10,000 configuration options!  
(x86, 64bit, …) 

  Most source code is “optional” 
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Feedback-Directed Crossover 
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Evaluation: Feature Attribute 

• Cost  R:  
the cost incurred to use the feature. 

• Used_Before  {0,1}:  
whether the feature has been used before. 

• Defects  Z:  
the number of defects known in the feature. 
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