Optimizing Selection of Competing Services with Probabilistic Hierarchical Refinement

Tan Tian Huat

Competing Services – Example 1

Car Booking Services

Hotel Booking Services

Competing Services – Example 2

- Netflix
 - A global provider of streaming movies and TV series
 - leverages Microservice Architecture
 - (opposed to monolithic architecture)
 - Advantages:
 - Strong module boundaries
 - Independent Deployment
 - Technology Diversity

Composite Service

Composite Service:

A service that leverages other existing services for achieving a business goal.

Travel Agency Composite Service (TAS)

Abstract service (e.g., Hotel Booking Service)

Concrete service (e.g., the Hilton Hotel booking service)

Abstract Composite Service Concrete Composite Service

Quality of Service (QoS)

Type of QoS Desitive	Concrete Services	Response Times (ms)	Cost
	f ₁	200	10
• Availability	f ₂	100	20
- Negative	f ₃	50	30

- Cost, Response Time
- QoS Constraints (can be due to Service Level Agreement)
 - Response time < 50 ms, Cost < \$20</p>
- **QoS Optimality:** The best QoS based on user preference.

Optimal Service Selection

Given a composite service:

- For each **abstract service** (e.g., a hotel booking service)
- Select a concrete service (e.g., the Hilton Hotel booking service) for the abstract service at runtime.
- Maximize the QoS optimality.
- Satisfy all QoS constraints.

An NP Hard Problem!

Probabilistic Hierarchical Refinement (ProHR)

Probabilistic Hierarchical Refinement (ProHR)

Preprocessing

Unsatisfiable Services Pruning

Concrete Service for FBS f_1, f_2, f_3, f_4

Concrete Service for HBS h_1, h_2, h_3, h_4

Concrete Services for TAS

Preprocessing

Non-Skyline Services Pruning

Concrete Service for FBS f_1, f_2, f_3, f_4

Concrete Service for HBS h_1, h_2, h_3, h_4

1	X
	TT .

Concrete Services	Response Times (ms)	Availability
f_1/h_1	100	0.85
f_2/h_2	300	0.92
f_3/h_3	500	0.95
f_4	600	0.94

Concrete Services for TAS

Probabilistic Hierarchical Refinement (ProHR)

Probabilistic Ranking

- Ranked the candidate concrete services for an abstract service according their
 - Local Optimality (L(s))
 - The local QoS optimality of a service
 - Constraint Satisfaction Probability (P(s))
 - How likely a service can satisfy the global constraints.

Concrete Services	Response Times (ms)	Availability	L(s)	P(s)	L(s)*P(s)
f_1/h_1	100	0.85	0.5	0.25	0.125
f_2/h_2	300	0.92	0.6	0.5	0.3
f_3/h_3	500	0.95	0.5	0.25	0.125

Probabilistic Ranking – Local Optimality

Concrete Services	Response Times (ms)	Availabilit Y	L(s)	P(s)	L(s)*P(s)	Service Ranking:	
	(113)					FBS	HBS
f_1/h_1	100	0.85	0.5	0.25	0.125	fa	h
f_2/h_2	300	0.92	0.6	0.5	0.3	·2 f	h
f_3/h_3	500	0.95	0.5	0.25	0.125	'1 £	''1 b
						ſ ₃	П ₃

Why f_2/h_2 ranks the highest in L(s):

• f_3/h_3 has the worst response time • f_1/h_1 has the worst availability • f_2/h_2 is "just nice"

Probabilistic Ranking – Constraint Satisfaction Probability

Concrete Services	Response Times (ms)	Availabilit Y	L(s)	P(s)	L(s)*P(s)	Service R	anking:
	(113)					FBS	HBS
f_1/h_1	100	0.85	0.5	0.25	0.125	fa	h.
f_2/h_2	300	0.92	0.6	0.5	0.3	•2 •	••2 b
f./h.	500	0.95	0.5	0.25	0 1 2 5	'1	11 ₁
'3/''3	500	0.55	0.5	0.25	0.123	f ₂	h,

Response time≤ 600ms, Availability≥ 0.8 FBS HBS → HBS →

Global Constraints

Response time: 300ms for each abstract service

Availability: 0.9 for each abstract service

Local Constraints

Why f_2/h_2 ranks the highest in P(s):

- It is the only one that fit the local constraint well
- f₁/h₁ does not match for availability
- f₃/h₃ does not match for response time

Probabilistic Hierarchical Refinement (ProHR)

Hierarchical Refinement

Optimal selection using Mixed Integer Linear Programming (e.g., Gurobi, Ipsolver)

1 <u>)</u>	
FBS	HBS
f ₂	h ₂
f ₁	h ₁
f ₃	h ₃

Hierarchical Refinement

How many services to choose at each round?

•P(S) is the probability that given an abstract service, at least one concrete service successfully satisfies the global constraints.

- $\mathbb{P}(S)$ > Threshold
- •Threshold is increased with the number of round.

Hierarchical Refinement

We will find a solution if there is one.

Experiments Result

At a Higher Level

On a Higher Perspective

ProHR

- 1. Preprocessing -> Delete unsuitable candidate
- 2. Ranking -> Rank the candidates probabilistically
- 3. Hierarchical Refinement -> Select the ranked candidates probabilistically

Conclusion

Conclusion

- We propose Probabilistic Hierarchical Refinement (ProHR)
- On a higher level an approach that can be integrated with searching techniques (e.g., MIP, EA) for NP-hard problems.

Questions?