
Tian Huat Tan1, Yang Liu1, Jun Sun2 and Jin Song Dong1

1National University of Singapore
2Singapore University of Technology and Design

1

Outline
 Introduction of Orc Language
 Compositional Partial Order Reduction
 PAT – Process Analysis Toolkit
 Conclusion and Future Works

2

Orc Language
 Proposed by Jayadev Misra at University of Texas at

Austin (UT Austin) in 2004.
 Orc is a task orchestration language, which can be

used as:
 Executable specification language
 General purpose programming language

3

Overview of Orc Language
 Site – Basic service or component

 Operator sites: +, −, ∗, &&, ||, < =
 1+1(+)(1,1)

 Timer Sites
 Rtimer(5000)

 External Sites
 Google ("Orc")

4

Structure of Orc Expression
 Simple: just a site call, eg. CNN(d)

 Publishes the value returned by the site.

 Composition of two Orc expressions:
f and g can be simple expression like CNN(d), or composite expression like
CNN(d) | BBC(d), x is a variable to be bounded.

f | g Parallel Combinator
f >x>g Sequential Combinator
f <x< g Pruning Combinator
f ; g Otherwise Combinator

 Orc is about the theory of combinators.

5

Parallel Combinator: f | g
 Evaluate f and g independently.
 Publish all values from both.
 No direct communication or interaction between f and g.

Example: CNN(d) | BBC(d)

Calls both CNN and BBC simultaneously. Publishes values
returned by both sites. (0, 1 or 2 values)

6

Pruning Combinator: g <x< f
For some values published by g do f .
 Evaluate g and f in parallel.

 Site calls in g that need x are suspended.
 see (M() | N(x)) <x< f

 When f returns a (first) value:
 Bind the value to x.
 Terminate g.
 Resume suspended calls in f.

 Values published by (f <x< g) are the values returned by f.
 Example:

Email(address, x) <x< (CNN(d) | BBC(d))

7

Notation: f <<g for f <x<g, if x is unused in g.

Challenges of Verifying Orc
 State explosion problem

 Many normal operations such as declaration of variable,
or application of function are designed to run in parallel.

 Example, in this simple expression
val a=2+2
1+1+a

⇒ ((+)((+)(1,1),a)) < a < (+)(2,2)

(+)(1,1) and (+)(2,2) are running in parallel.

8

Observation 1 - Independency
 Nature of Sites

 Stateless sites – Sites that do not have any states
 e.g. Plus site (+),

(+)(1,2)=3
 Stateful sites – Sites that have states, stored in some state objects

 e.g. Buffer site, Buffer (State Object: a FIFO queue)
(userdb.put(“item1”) < userdb < Buffer())

 Many site calls are independent – their order of execution is
irrelevant
 Any two stateless site calls are independent
 Any two stateful site calls are independent iff they do not share

common state object.
(Solution: Partial Order Reduction)

9

Partial Order Reduction (POR)
 Reduce the number of possible orderings for checking

for certain properties.

 Algorithms
 Identifying a subset of outgoing transitions of a state, call ample set,

that is sufficient for verification.

10

Observation 2 - Hierarchical
Concurrent Processes(HCP)
 The structure of Orc program can be viewed as

hierarchical concurrent processes
 e.g. ((1|2) << 3) | ((4|5) << 6)

11

Level 3

Level 2

Level 1

Level 0 P0: ((1|2)<<3) |((4|5)<<6)

P1: (1|2)<<3

P3: 1|2

P7: 1 P8: 2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

No Partial Order Reduction

12

Level 3

Level 2

Level 1

Level 0 P0: ((1|2)<<3)|((4|5)<<6)

P1: (1|2)<<3

P3: 1|2

P7: 1 P8: 2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

((1|2)<<3) |((4|5)<<6)

(2<<3)|((4|5)<<6)

(1<<3)|((4|5)<<6)

(1|2)|((4|5)<<6)

((1|2)<<3) |(5<<6)

((1|2)<<3) |(4<<6)

((1|2)<<3) |(4|5)

Labeled Transition System:
Number of possible transitions
from P0 is 6.

HCP Graph

Classic Partial Order Reduction -
Algorithms
Given a state s, how to find an ample set,
1. Checking four conditions for each level 1 process.
2. If any of the processes satisfies all four conditions,

the transitions from that process (which is a
subset of all possible transitions) could be used as
the ample set.

3. Otherwise, all possible transitions are taken.
(Same as no partial order reduction)

13

Classic Partial Order Reduction

14

Level 3

Level 2

Level 1

Level 0 P0: ((1|2)<<3) |((4|5)<<6)

P1: (1|2)<<3

P3: 1|2

P7: 1 P8: 2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

Only apply
for
level 1
processes

(1|2)<<3

(2<<3)

(1<<3)

1|2

(1|2)<<3 |(4|5)<<6

(2<<3)|((4|5)<<6)

(1<<3)|((4|5)<<6)

(1|2)|((4|5)<<6)

(1|2)<<3 |(5<<6)

(1|2)<<3 |(4<<6)

(1|2)<<3 |(4|5)

A solution for Hierarchical Concurrent Processes -

Compositional Partial Order Reduction

15

How to find an ample set, given a state s.
1. Categorized four conditions into two global

transitions and two local transitions.
2. Checking two local transitions recursively for the

processes at each level and collect all potential ample
sets that satisfies the conditions.

3. Filter the collected potential ample sets with two
global transitions.

4. Returned one of the ample sets that satisfies all four
conditions.

5. Otherwise, all the possible transitions are taken.
(Same as no partial order reduction)

A solution for Hierarchical Concurrent Processes -

Compositional Partial Order Reduction

16

Level 3

Level 2

Level 1

Level 0 P0: ((1|2)<<3) |((4|5)<<6)

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6Apply for
processes
at each
level

17

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

Processes in Level 1 is analyzed one by one.
Assume P1 is analyzed first.

18

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

After choosing P1, traverses until the process at the bottom level.

Notation
Potential Ample sets, denoted as amples , are set of the ample set
that satisfies local conditions.
amples={ample1, ample2 ,…}

For amples(P7) = {enable(P7)} = {{(!1,stop)}}
For amples(P8) = {enable(P8)} = {{(!2,stop)}} 2 stop

1 stop

19

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

For amples(P3)
= reform(amples(P7),P3) U reform(amples(P8), ,P3) U {enable(P3)}
= reform({{(!1, stop)}},P3) U reform({{(!2, stop)}},P3) U {enable(P3)}
= {{(!1,2)}} U {{(!2,1)}} U {{(!1,2), (!2,1)}}
= {{(!1,2)}, {(!2,1)}, {(!1,2),(!2,1)}}
(Ample sets with 3 possible ample set)

1|2
2

1

For amples(P4)
= {enable(P4)}
= {{(!3,stop)}} 3 stop

20

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

For amples(P1)
= reform(amples(P3),P1) U reform(amples(P4),P1) U {enable(P1)}
= reform({{(!1,2)}, {(!2,1)}, {(!1,2),(!2,1)}} ,P1) U

reform({{(!3,stop)},P1) U
{enable(P1)}

21

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

For amples(P1)
= reform(amples(P3),P1) U reform(amples(P3),P1) U {enable(P1)}
= reform({{(!1,2)}, {(!2,1)}, {(!1,2),(!2,1)}} ,P1) U
reform({{(!3,stop)},P1) U (Local condition violation - RHS of pruning operator not allowed)

{enable(P1)}

22

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

For amples(P1)
= reform(amples(P3),P1) U reform(amples(P3),P1) U {enable(P1)}
= reform({{(!1,2)}, {(!2,1)}, {(!1,2),(!2,1)}} ,P1) U

reform({{(!3,stop)},P1) U (Local condition violate-RHS of pruning operator not allowed)

{enable(P1)}
={{(!1,2<<3)}, {(!2,1<<3)}, {(!1,2<<3),(!2,1<<3)},{(!1,2<<3), (!2,2<<3),
(!3,1|2)}}

23

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

For amples(P0)
= reform(amples(P1),P1)
= {{(!1,2<<3|P},

{!2,1<<3| P},
{(!1,2<<3|P),(!2,1<<3| P)},
{(!1,2<<3| P), (!2,2<<3| P), (!3,1|2| P)}}

All four possible ample sets are checked for two global conditions,
and all four turned up to be valid.
Ample set with smallest number of element is chosen. If they are
multiple of them, choose one non-deterministically.

24

Level 3

Level 2

Level 1

Level 0 P0: (1|2)<<3 |(4|5)<<6

P1: (1|2)<<3

P3: 1|2

P7: 1 P8:2

P4:3

P2: (4|5)<<6

P5: 4|5

P9:4 P10:5

P6: 6

Assume {(!1,2<<3|(4|5)<<6} is chosen

(1|2)<<3 |(4|5)<<6

(2<<3)|((4|5)<<6)

(1<<3)|((4|5)<<6)

(1|2)|((4|5)<<6)

(1|2)<<3 |(5<<6)

(1|2)<<3 |(4<<6)

(1|2)<<3 |(4|5)

Classic
POR (3)

CPOR (1)

No POR
(6)

25

PAT Architecture Design

The Current Status
 PAT is available at http://pat.comp.nus.edu.sg
 1M lines of C# code, 11 modules with 100+ build in examples
 Used as an educational tool in e.g. York Univ., Univ. of

Auckland, NII (Japan), NUS …
 Attracted more than 1400+ registered users in the last 3

years from more than 300+ organizations, e.g. Microsoft, HP,
ST Elec, Oxford Univ., … Sony, Hitachi, Canon, Samsung.

 Japanese PAT User group formed in Sep 2009:

26

Founding Members:

Kenji Taguchi
Masaru Nagaku
Toshiyuki Fujikura

http://pat.comp.nus.edu.sg/�

Evaluation

27

Conclusion and Future Works
 Contribution:

 A new technique of Compositional Partial Order Reduction (CPOR)
is proposed.

 Verification for Orc language by directly using its operational
semantics is supported.

 Future Works:
 Extends CPOR to other languages.

28

29

30

	Verification of Orchestration Systems using�Compositional Partial Order Reduction
	Outline
	Orc Language
	Overview of Orc Language
	Structure of Orc Expression
	Parallel Combinator: f | g
	Pruning Combinator: g <x< f
	Challenges of Verifying Orc
	Observation 1 - Independency
	Partial Order Reduction (POR)
	Observation 2 - Hierarchical Concurrent Processes(HCP)
	No Partial Order Reduction
	Classic Partial Order Reduction -Algorithms
	Classic Partial Order Reduction
	A solution for Hierarchical Concurrent Processes -�Compositional Partial Order Reduction
	A solution for Hierarchical Concurrent Processes -�Compositional Partial Order Reduction
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	PAT Architecture Design
	The Current Status
	Evaluation
	Conclusion and Future Works
	Demo
	Thanks!

