JSDC: A Hybrid Approach for
JavaScript Malware Detection
and Classification

L
_

Problem

The New Trend of Malware:

JS: The largest number of malware in 2013H1 [MSIR:15].

JavaScript based Malware Detection:
JSand [WWW'10] : static analysis + machine learning

Prophiler [WWW'11]: static analysis + machine learning :
ZOZZLE [USS'11]: AST (static) analysis + Bayesian classificatior %c

>
Revolver [SEC'13]: AST (static) analysis + similarity calculation f%,,,/
Cujo [ACSAC'10] : static and dynamic analysis + SVM \

What is missed:
A hybrid approach

to assure both accuracy and performance

to detect and also classify JS malware w Y =L

Contribution

Technical aspects:
Machine learning plus dynamic confirmation.
two phase machine learning: first detection, then classification
Features extracted from inner- and inter- script program analysis

Evaluation
conduct large-scale evaluations to show its effectiveness.
low FP rate (0.2123%) and low FN rate (0.8492%).

1,400,000 real-world JavaScript with over 1,500 malware reported, for which many
anti-virus tools failed.

JavaScript Attack type

AVulnerability based classification

Type |: Attack targeting browser vulnerabilities. J@ @(‘@
Type l: B hijack k o
e |I: Browser hijacking attack. 2
yP J 9 Oi m
(%) /
Type lll: Attack targeting Adobe Flash.
& N “poF B
: &)
Type IV: Attack targeting JRE. ‘e’éﬁ)
Type V: Attack based on multimedia.
g2 gy
Type VI: Attack targeting Adobe PDF reader. ORACLE TIII/S

Type VII: Malicious redirecting attack. ExploigsiBlacoledy
L@ :

Type VIII: Attack based on Web attack toolkits, e.g. Blacole.

System Overview of JSDC

| l new

| il M :conﬁrmed attack

: preparation validation !

! : type

' JavaScript fragments unmatched E " O
: I

: I

| f?atutr_e dynamic !

! extraction : i

| confirmation i o —~
| detection : ATERE attack

' feature vector Jall into grey zond type

| matched report

! malware attack type N
! detection classification

i

|

L

attack type feature vector

Feature Extraction

Possibly Unpacked Dynamically loaded
obfuscated code execution-ready code and generated code
@ @Cﬁ\\ E

Inter-Script

Textual
= Program

Analysis

Analysis

Example

<1
eval (String.fromCharCode(118,97,114,32,120,101,119,61,52,53,51,
56,48,48,53,52,51,59,118,97,114,32,103,104,103,52,53,61,34,110,
117,111,116,34,59,118,97,114,32,119,61,34,111,34,59,118,97,114,
32,114,101,54,61,34,108,108,46,34,59,118,97,114,32,104,50,104,
61,34,99,111,109,34,59,118,97,114,32,97,61,34,105,102,114,34,59,
118,97,114,32,115,61,34,104,116,116,34,59,100,111,99,117,109,
101,110,116,46,119,114,105,116,101,40,39,60,39,43,97,43,39,97,
109,101,32,115,114,39,43,39,99,61,34,39,43,115,43,39,112,58,47,
47,39,43,103,104,103,52,53,43,39,39,43,119,43,39,39,43,114,101,
54,43,39,39,43,104,50,104,43,39,47,39,43,39,34,32,119,105,100,
39,43,39,116,104,61,34,49,34,32,104,39,43,39,101,105,103,104,
116,61,34,51,34,62,60,47,105,102,39,43,39,114,97,109,101,62, 39,
41,59,32,118,97,114,32,106,104,114,52,61,52,51,50,52,50,50,52)) ;
//-=>

(a) The original obfuscated version

var xew = 453800543;

var ghgd4b = "nuot";

var w = "o";

var re6 = "11.";

var h2h = "com";

var a = "ifr";

var s = "htt";

document.write("<"+a+"ame sr"+"c=\""+s+"p://"+ghgdb+""+w+""+reb
+II "+h2h+"/""'”\"Wid""'"th:\" 1\Ilhll+lleight=\"3\ tl>(/ if Tl+1lra'.[ne>1l) ;
var jhrd = 4324224;

(b) The HtmlUnit unpacked version

Features for Detection

Textual Analysis
Longest word size -- 814 as shown in figure (a)
Entropy -- obfuscated code is usually lower than 1.2, 1.1 as shown in figure (a)
Byte occurrence frequency of specific character -- 232 comma characters
Commenting style -- <!--and //-->

Inner-Script Program Analysis
Function calls with security risks
7 types of 23 functions
AST features
e.g. the depth of the AST, the maximum breadth

Function call patterns

newActiveXObject() and createXMLHTTPRequest() are widely used by malware targeting
vulnerability in ActiveX components

Features for Classification

Inter-Script Program Analysis

we count external scripts from other domains.

Miscellaneous and derived features

feature changeSRC counts the number of changing of the src attribute
(e.g., for <iframe src="..."/> taqg)

domAndDynamicUsageCnt counts the number of invocation for APIs that
change DOM structure or supporting dynamic execution of JavaScript code

dynamicUsageContentLen stores the length of contents that are passed as
arguments to APIs that support dynamic execution of JavaScript;

Example

Calling external JavaScript

<script src="http://xxx.xxx.%xxx/a.js"></script>
<script>

new_element=document.createElement(”script”);
new_element.setAttribute("type","text/javascript");
new_element.setAttribute("src","a.js");//
document . body . appendChild (new_element) ;
function b() {

a(); //a() is a function in a.js that contains malicious code

}

</script>

Evaluation

Data sets used in controlled experiments:

Benign data set F#samples
Alexa-top500 websites 20000
Malicious data sets #samples
Attack targeting browser vulnerabilities (type I) 150
Browser hijacking attack (type 1I) 28
Attack targeting Flash (type III) 81
Attack targeting JRE (type IV) 191
Attack based on multimedia (type V) 190
Attack targeting PDF reader (type VI) 101
Malicious redirecting attack (tvpe VII) 92
Attack based on Web attack toolkits (type VIII) 109
Total 942

Data sets used in wild predication:

1,400,000 scripts crawled by Heritrix with randomly selected seeds,
from web sites of universities, governments, companies, discussion forums, etc.

Detection on the Labelled Data Sets

Accuracies of different classifiers

ML classifier Accuracy FP rate FN rate

RandomForest (RF) 99.9522% 0.2123% 0.8492%
J48 99.8615% 0.7431% 2.335%
Naive Bayes (NB) 98.2237% 1.127% 4.5280%

RandomTree (RT) 09.8758% 0.3609% 1.4862%

Comparison with anti-virus tools

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%
JSDC AVl AV2 AV3 AV4 AVg AV6 AV7 AVE AVg AVio AVii AVi2

Detection on the Unlabelled Data

Set

1,400,000 wildly crawled scripts, the best trained classifier
RF predicates 1,530 snippets as malicious.

manually inspect 100 cases (randomly selected).
only 1 FP case.

11 out of 99 TP cases are missed by all the tools.

Detection on the Unlabelled Data

Set

Detection ration of other tools on the 99 unique
samples reported by JSDC

60.00%
50.00%
4,0.00%
30.00%
20.00%
10.00%

0.00%
AVi AV2 AV3 AV4 AVg AV6 AV7 AV8 AVg AVio AVii AVi2

Evaluation of Attack Type

classification

The accuracy of the trained model on g42 known JS malware:

a b c d o f g h <-—classified as
139 0 0 0 9 2 0 0 a = type |
0 23 4 0 0 0 0 1 b = type II
1 1 74 1 0 0 1 3 c = type III
0 0 2 179 9 0 1 0 d = type IV
1 0 0 0 179 10 0 0 e = type V
0 0 0 0 19 82 0 0 f = type VI
0 0 0 1 1 0O 87 3 g = type VII
0 0 0 1 0 0 3 105 h = type VIII

The accuracy in classification of 1530 wild JS malware

L

Tvpe type 1 type 11 type III type IV
Num 113 (7.39%) 10 (0.65%) 75 (4.90%) 253 (16.54%)
Type type V type VI type VII type VIII

MNum 202 (13.20%) 101 (6.60%) 350 (22.88%) 426 (27.84%)

we manually check 164 samples --- an accuracy of 87.8% (144/164)

Among the 20 error cases, g samples do not belong to any of the eight attack types and
11 samples are classified into the wrong types.

Certainty for Grey Zone

The dynamic confirmation is applied on uncertain cases that fall into
the grey zone during attack type classification.

The certainty value and the number of samples that fall into grey
zone

certainty certain# total uncertain# uncertain %

1 764 1530 766 51.31%
=0.9 854 1530 676 50.07%
>0.8 994 1530 536 44.18%
=0.7 1296 1530 234 15.29%

>0.6 1311 1530 219 14.31%

Dynamic Confirmation

Malicious Instrumented / Benign traces : Regres.,sion Random
J$ Variants browser / Malicious trace Preprocessing| testing sampling testing
Sequences of E Candidate i
common actlon i____g_LJ_tE_r_\/_____:
' , Attack model Al ack ' Membership !
DEtECt'OH Detection |<%/ : behavior VIGMDETS |p:

results in DFA learning | query |
) Input mmm) Learning flow /] \

. Dependency Defense Replay
mmm) Output === Detection flow analysis dles mechanism

JS* framework [ISSTA'15]:

based on L* algorithm that learns a DFA from a set of strings

Example

System calls Actions
nsISupportsString.data

nslCommandLine.resolveURI = a
nslObserverService.notifyObservers

nsIWebNavigation.loadURI = b
nslScriptableUnicodeConverter.convert ToByteArray = c
nslCryptoHash.update = d
nslLocalFile.append = €
nslTimer.initWithCallback = f
nsllOService2. new URI = g

nslScriptableUnicodeConverter.convert TolnputStream
nsIBoxObject.setProperty

c.e

b,c,d,e,f.g a,c
[

Performance of Malware Detection

Table 5: The running time for different classifiers

Machine Lea rning Operation Num Time(s) Avg(ms)
Feature extraction 20942 1660.7 79.3
Training(RandomForest) 20942 0.785 0.037
Training(J48) 20942 0.364 0.017
Training(Niive Bayes) 20942 0.124 0.006
Training(RandomTree) 20942 0.275 0.013
Detection(RandomForest) 1,400,000 57.4 0.041
Detection(J48) 1,400,000 26.6 0.019
Detection(Niive Bayes) 1,400,000 8.4 0.006
Detection(RandomTree) 1,400,000 19.6 0.014

Dynamic Confirmation

Discussion

Two- or one-phase machine learning classification?

On the 20942 training samples, the accuracy of the 4 trained classifiers is 90.99% (RF),
85.74% (J48), 77.15% (NB) and 88.27% (RT), respectively.

Predicative features.
89% of Type | samples have feature changeSRC <3;
52% of Type Il have feature with a value>20;
74% of Type Il have feature eval with a value>1000;
83% of Type IV have feature GetUserAgent > 2:5;

Conclusions

Our method not only learned features of maliciousness but also of
attack type.

We also demonstrated our effectiveness and efficiency by empirical
wild prediction.

Among over 1,400,000 scripts, we find over 1,500 malware with 8
attack types.

Our detection speed is scalable with below 8o ms per script.

Thanks! ©

Function calls with security risks

Function Name

Function Type

Possible Threats

eval()
window.setInterval()
window.set Timeout()

Dynamic code execution

Dynamic code generation

location.replace()
location.assign()

Change current URL

Redirect to malicious URL

getUserAgent()
getAppName()

Check browser

Target specific browser

getCookie()
setCookie()

Cookie access

Manipulate Cookie

document.addEventListener()
element.addEventListener()

Intercepting Events

Block user’s operation or
emulating

document.write()
element.changeAttribute()
document.writeln()
element.innerHTML()
element.insert Before()
element.replaceChild()
element.appendChild()

DOM operation

Embed malicious script.
invisible java applets,
invisible iframe,
invisible silverlight, etc.

String.charAt()
String.charCodeAt()
String.fromCharCode()
String.indexOf()
String.split()

String operation

Hide intension, by
encoding and encryption

Function call patterns

Function call pattern:

Intension:

unescape()

eval()

GetCookie()
dateObject.toGMTString()
SetCookie()
document.write()
document.createElement()
element.appendChild()
newActiveXObject()
create X MLHTTPRequest()

obfuscation to evade checking
dynamic generation

check Cookie

generate time String used in cookie
set cookie to mark

generate dyvnamic document content
create new document element
append new element to current one
create new Active object

download exploit file to local system

