Model-based Methods for
Linking Web Service
Choreography and Orchestration

Jun Sun, Yang Liu, Jin Song
Dongy, Geguang Pu and Tian
Huat Tan



Outline

e PAT Introduction and Demo

e Overview of Web Services (WS)
- Two views of WS
- Problems addressed

« WS Modeling Languages

WS Verifications
 Experiments

 Conclusion and Future Works



PAT: Process Analysis Toolkit

PAT is a SPIN-like self-contained environment for system
specification, visualized simulation and automated

verification.

Distributed algorithms, Web services, bio-systems, security protocols, sensor networks, etc.
= ‘
= Concurrent Module Real-time Module Vroh Seevico Bio-system Module
g Module

Q

=

(&)}

=

}"E-

&

Q

O

.l
e
s 2 Reachability Analysis, LTL Model Checking, Refinement muniemam B
¢ Checking, Probabilistic Model Checking, etc. ’
<




Contribution

* Formal Language Proposal - We propose formal
languages for modeling choreography and orchestration
respectively with formal operational semantics.

 Verification - we provide mechanism to check both
choreography and orchestration for

- Deadlock-freeness, reachability and LTL

- Whether an orchestration conform to a specific
choreography

 Synthesis - We synthesize an orchestraction based on
choreography if it is implementable. Otherwise, we use a
repair process to generate an implementable choreography
by inserting communications between providers.



Two Views of Web Services

* Web service choreography describes collaboration protocols
of cooperating Web service participants.

- A global point of view

- A contract among multiple corporations, i.e., a specification of
requirements

- May not be executable
- WS-CDL (Web Service Choreography Description Language)

 Web service orchestration is the automated arrangement,

coordination, and management of (external) Web Services
at the message/execution level

- Alocal point of view

- An orchestration is the composition of concrete services
provided by each corporation who realizes the contract.
- Executable

- WS-BPEL (Web Service Business Process Execution Language)



Problems Addressed

e Verification

- Whether a choreography or an orchestration is
correct with respect to critical system
properties

* Deadlock-freeness
* Reachability testing
 Temporal logic formulae (LTL)

- Whether they are consistent with each other

* the orchestration faithfully implements all and only
what the contract states.

 Synthesis

- to decide whether a choreography can be
realized faithfully by any orchestration
(refereed as implementable) and

- synthesize a prototype orchestration if possible.



WS Module Workflow

Choreography (WS-CDL)

Orchestration (WSBPEL)

|

i

l Abstract lAbstract
Chor Model -» Conformance Checker |« : Orch Model
ro
% Is strongly connected?
l No l Yes |7 |
Chor Generator Synthesizer i Simulator
Counterexample




WS Modeling Languages

* Intermediate modeling languages for Web
services
- Languages like WS-CDL or WS-BPEL are
designed for machine consumption and

therefore are lengthy and complicated in
structure

- Mismatches between WS-CDL and WS-BPEL

- Intermediate languages focus on the
Interactive behavioral aspect

- Our verification and synthesis approaches is
not bound to one particular Web service



Choreography Language

L 5= Stop — 1naction
Skip — termination
svr(A, B, c?z) — 7 — service nvocation
chi{A, B,exp) — T — channel commmunication
@B o= BEp: L — assignment
of b1 else T — conditional
T70OJ — choice
I T — service interleaving
Z: T — sequential




Online Shopping Example

1. BuySell() = B2S(Buyer, Seller,{ Bch}) — Session();

2. Session() = Bch(Buyer, Seller, QuoteRequest) — Bch(Seller, Buyer, QuoteResponse.x) —
3 if (z <= 1000){

4. Beh( Buyer, Seller, QuoteAccept) — Bch(Seller, Buyer, OrderConfirmation) —
5 S2H (Seller, Shipper,{ Bch, Sch}) —

6. (Sch(Shipper, Seller, DelweryDetails.y) — Stop

7. ||| Beh(Shipper, Buyer, DeliveryDetails.y) — Stop)

8 belse{

9. Beh( Buyer, Seller, QuoteReject) — Session()

10. O Bceh(Buyer, Seller, Terminate) — Stop



Semantic Model for
Choreography

A system configuration is a 2-tuple (/,V)

- | is a choreography and V is a mapping from
the variables to their values

e Labeled Transition System (LTS) is (S,init, T)

- S is the set of reachable configurations,

- Init is the initial state (i.e., the initial
choreography and the initial valuation of the
variables) and

- T is a labeled tranS|t|on relation defined by the
semantics rulez, vy = 7. v")

— TranS|t|.on (50, €0, 51, €15 * s €n—_1, 5n)
- Execution (e, €1, ,ex)

- Slngle TraCe -t'ra,ce.s (f}

- Traces



Orchestration Language

P ::= Stop | Skip
invlch — P
vty — P
chlexp — P
ch?z — P
T = emps P
of b P else Q)
POQ

P A Q
Pl Q

P; Q

— primitives

— service invoking

— service being invoked
— channel output

— channel mput

— assignment

— conditional branching
— orchestration choice
— interrupt

— Interleaving

— sequential



Online Shopping Example

Role

Role

Role

Buyer {

var counter = (;

Main ()

Session()

Seller {
var
Main ()

Session()

Shipper {
var detail

Main ()

= B2SY{Bch} — Session();
= Bch! QuoteRequest — counter++; Beh? QuoteResonse.x —
if (z <=1000){
Beh! QuoteAccept — Bch? OrderConfirmation
— Bch? DeliveryDetails.y — Stop
h

elseif (counter > 3){ Bch!QuoteReject — Session()} else { Stop};

= 1200;

= B2S?{ch} — Session();

= ch?QuoteRequest — ch!QuoteResonse.x — (ch?QuoteAccept —
ch!OrderConfirmation — S2H{ ch, Sch} — Sch?DeliveryDetails.y —
Stop O ch? QuoteReject — Session());

“20/10/2009";
= S2H?{chl, ch2} —
(ch1!DelieryDetails.detail — Stop ||| ch2!DelieryDetails.detail — Stop);



Verifications

Deadlock-freeness
Reachability testing
Temporal logic formulae (LTL)

Conformance Checking

- An orchestration O is valid implementation of a
choreography / if and only if O refines I,

I.e., traces(0O) < traces(l)

Normalized LTS Let (S, inzt, T') be a LTS. The normalized LTS
is (NS, Ninit, NT') where NS is the set of subsets of S, Ninit =
7" (init),and NT = {(P,e, Q) | PE NS A Q={s:S|dwv :
P, duva: S, (vi,e,m2) € T ANs et (mn)}}



Conformance Checking
Algorithm

procedure conformance(QO,7)
1. checked := @; pending.push((inito, 7" (1nitz)));
2. while pending is not empty do

3. (Orc, NChor) := pending.pop();

4. checked := checked U {(Orc, NChor)};

5 if enabled(Orc) € (enabled(NChor) U {7}) then
6. return false;

7. endif

8. foreach (Orc’, NChor') € next(Orc, NChor)

9. if (Orc’, NChor’") & checked then

10. pending.push((Orc’, NChor’));

11, endif

12. endfor

13. endwhile
14. return true;



Experiments

Online Shopping Deadlock Checking Result

Online Shopping Refinement Checking Result

10000000 - 100000000 -
S —a— Number of States = — Number of States
—— Number of Transitions — — —il— Number of Transitions
100000 H 000000 4 i .
—&— Execution Time {seconds) /'/ o —i— Execufion Time (seconds)
1000 : 00000 s
1000 10000 l/
2 @ 1000 -
3 ’ ODo
E 0o !l”,‘ % P
10 ot 2 il -
i .-r i ___-"-
1 2 e 3 4 ——
o1 — — 1 - 2
0.0 s sz ot
D.001 | el e Y
Number of Buyers Number of Buyers
Travel Agent Deadlock Checking Result Travel Agent Refinement Checking Result
140000 - 10000000 ,
—#— Numbher of States /. - —#— Number of States E
120000 4 —m- Number of Transifions S | —— Mumber of Transitions /.
= 1 ransi -
100000 | —— Execution Time (seconds) =
100000 J| —— Execution Time (seconds) =
10000 /'/
80000 1000 e
g i @ , e
= - = 100 o= —~
= 0000 5 - | o o
-
e 10 = -
40000 ,-.’/ i -
1 T - » T
— 1 o
20000 i -
—&
5 il 0 et
f—h & ——&———k———k———&— &
20 D 0 50 &0 70 a0 T

Number of Clients

Number of Clients




Conclusion

A model-based methods for fully automatic
analysis of Web service compositions
- Intermediate languages
- Verification
- Synthesis (light-weight)
e Future Works

- Language enrichment
 Event handlers, fault handlers and compensation handlers.
- To support more Web service composition language, e.qg.,
Orc language.
- Automatic conversions between WS-BPEL/WS-CDL and
our language
- Optimization techniques

* Candidates include those which are designed for
parameterized systems and infinite state systems



