
JSFox: Integrating Static and Dynamic

Type Analysis of JavaScript Programs

 JavaScript is one of the most used program-

ming languages.

 JavaScript is a dynamic, weakly typed

language with many flexible features.

Motivation

Type analysis is crucial for capturing

representation errors

We proposed JSFox to infer types for

JavaScript programs

Motivation Example

JSFox Architecture Static Type Analysis

field-sensitive, flow-sensitive, context-

insensitive, and path-insensitive

Dynamic Type Analysis

The instrumented JavaScript program is

executed during dynamic analysis.

Experimental Evaluation

 Type information is the basis for program

analysis methods

 Type information can serve as an abstraction

for analysis methods

We divide JavaScript types into seven

domains.

A domain is defined using a lattice, which is

Represented using a Hasse diagram

The program contains a variadic function, and

the eval construct for evaluating dynamically

loaded code.

These dynamic features contribute to the

dynamism of JavaScript, and cannot be

precisely modeled in static type analysis!

Javascript

Program

Normalization

Datalog Analysis

Static Type
Analysis

Instrumented

Execution

Dynamic Type
Analysis

Integrated Type
Analysis

Type Valuation

Static
Component

Dynamic
Component

Dynamic

Type

Valuation

Static

Type

Valuation

Normalization

A JavaScript program is first normalized into a

three address-code-like format

At most an operator on the right hand side (RHS)

of the statement

 All variables are alpha renamed during the

normalization

Datalog Analysis

Control flow analysis: call-graph discovery provides

information on which function definition is invoked by

a function application

Pointer analysis: provides the information on which

object a variable is

pointed to

There are a total of nine Datalog rules in our

analysis

[AllocRule]

VarPointsTo(variable , heap) :-

Reachable(methHeap), Alloc(variable , heap ,

methHeap)

Instrumented Execution: Obtain the variable

values and dynamic call graph edges

For collection of variable values, we record the

values of variables that have been assigned at a

particular line

 For collection of dynamic call graph edges, we

record the function definition that is invoked by a

function application

Types in JavaScript

Hasse Diagrams

We evaluate our tool on a popular JavaScript

benchmarks collection

and real-world Web applications:

JetStream: benchmarks from the SunSpider

1.0.2 and Octane 2

Web Applications: Five real-world Web

applications

Experimental Results

 We have discovered 23 type issues, and out

of them 8 cases can only be detected by

integrated type analysis

The approach in [1] has identified 12 of them,

which are all included in our pure dynamic type

analysis

[1] M. Pradel, P. Schuh, and K. Sen. Typedevil:

Dynamic type inconsistency analysis for

javascript. In 37th IEEE/ACM International

Conference on Software Engineering, ICSE

2015, Florence, Italy, May

16-24, 2015, Volume 1, pages 314–324, 2015.

Tian Huat Tan1, Yinxing Xue2, Manman Chen3, Shuang Liu4, Yi Yu5, Jun Sun3

1Acronis Singapore, 2NTU Singapore, 3SUTD Singapore, 4SIT Singapore, 5NII Japan

Dynamic type analysis is mostly incomplete,

cannot cover all paths. Therefore, static

type analysis is incorporated.

Integrated Type Analysis: use dynamic type

analysis in refining static type analysis to make the

analysis more complete and precise

Dynamic call graph edges: capture the call graph

edges that cannot be easily discovered by static

analysis

Dynamic type valuation: discover variable values

that are obtained through dynamic features of

JavaScript, e.g., runtime code evaluation.

JSFox: make use of integrated static and

dynamic type analysis

