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ABSTRACT
Service composition uses existing service-based applications as com-
ponents to achieve a business goal. The composite service operates
in a highly dynamic environment; hence, it can fail at any time
due to the failure of component services. Service composition lan-
guages such as BPEL provide a compensation mechanism to roll-
back the error. But such a compensation mechanism has several
issues. For instance, it cannot guarantee the functional properties
of the composite service after compensation. In this work, we pro-
pose an automated approach based on a genetic algorithm to calcu-
late the recovery plan that could guarantee the satisfaction of func-
tional properties of the composite service after recovery. Given a
composite service with large state space, the proposed method does
not require exploring the full state space of the composite service;
therefore, it allows efficient selection of recovery plan. In addition,
the selection of recovery plans is based on their quality of service
(QoS). A QoS-optimal recovery plan allows effective recovery from
the state of failure. Our approach has been evaluated on real-world
case studies, and has shown promising results.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; H.3.5 [On-
line Information Services]: Web-based services
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Web Services; QoS; Service Composition; SOA; Genetic Algorithm

1 Introduction
Service-oriented architecture (SOA) promotes the use of services
as building blocks for software applications. This allows enter-
prise to outsource part of their processes to external services, which
produces a lower cost of ownership for the enterprises over time.
Services make use of open standards, such as WSDL [11] and
SOAP [19], allowing interaction of heterogeneous applications. To
utilize a set of services to achieve a business goal, service compo-
sition languages such as BPEL (Business Process Execution Lan-
guage) [5] have been proposed. The service that is composed by
service composition is a composite service, and services that the
composite service makes use of are component services.
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SOA allows functionalities of the composite services to be dis-
tributed to third party service providers; therefore component ser-
vices are allowed to evolve freely, independently of each other.
Component services could behave differently after being modified
by service providers, or could fail due to various reasons such as
network problems, software bugs, hardware failure, etc. In ad-
dition, a composite service (expressed, e.g., in BPEL) uses late
binding mechanism, where abstract services are used during de-
sign time, and the concrete services would only be decided during
runtime. As a result, design-time validation of composite services,
such as through testing or static verification, is insufficient. There-
fore, runtime monitoring of the functional properties, and being
able to recover from properties violations, are essential for the de-
pendability of a composite service.

Composite service languages, such as BPEL, are equipped with
constructs to support the compensation mechanism. The compen-
sation mechanism is an application-specific way to reverse com-
pleted activities. For example, the compensation of making a hotel
reservation would be to cancel the reservation. One of the impor-
tant issues of the current compensation mechanism is that it is un-
certain whether the compensation will lead to a system state that
could satisfy the functional properties of the composite service.

Existing works [23, 24] address this problem by devising a re-
covery plan that allows the system to recover from properties vio-
lations, based on exploring the state space of the composite service
using planning techniques based on SAT-solvers. This approach
suffers from several disadvantages. First, the full state space needs
to be generated for recovery plans exploration; therefore it might
encounter the state explosion problem, especially when dealing
with large-scale service composition (see, e.g., [13]). Second, the
QoS aspects (e.g., dependability and response time) of the recovery
plan are not taken into account explicitly in this approach. An im-
portant aspect of a recovery plan is the QoS. A recovery plan with
poor QoS is not only ineffective, but also it might result in unde-
sired side effects such as compensation loops, i.e., it leads to failed
services and compensate repeatedly. Because a failed service has
low dependability, the recovery plan that involves the invocation of
the failed services will be filtered away in a selection procedure that
is QoS-aware.

In this work, we address this issue by proposing a technique
based on genetic algorithms (GA) for searching for a recovery plan.
GA are computational methods inspired by the biologic evolution,
which have been used to solve a variety of problems (see, e.g., [20]).
Traditional GA use fix-length encodings, called chromosomes. How-
ever, using chromosomes to encode the recovery plan poses a chal-
lenge, as the length of chromosome depends on the size of the state
space, which is unknown beforehand. Therefore, an estimation on
the chromosome length is necessary. Exact calculation of the length
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of chromosome by exhaustively exploring all possible states is not
feasible, as it obviously leads to the state space explosion. Further-
more, over-approximating the length of chromosome might render
GA ineffective, whereas under-approximation might result in the
incomplete encoding of recovery plan. In this work, we propose
rGA (recovery plan GA), to find a near-optimal recovery plan in a
large state space. rGA addresses the aforementioned problems by
adaptively adjusting the length of chromosomes with respect to the
size of the state space during the recovery plan searching. Further-
more, rGA does not require generating the full state space – it only
generates the partial state-space on-the-fly during the exploration.
Our contributions are summarized as follows.

1. Novel representation and operations – We propose rGA, a
novel GA making use of dynamic-length chromosomes to
represent the recovery plans, and manipulating them using
genetic operators for evolving new recovery plans.

2. On-the-fly state-space exploration – rGA does not require
the generation of full state space beforehand. State space is
generated on-the-fly during recovery plan exploration. Since
rGA performs guided exploration on the most promising re-
gion of the search space for the recovery plans, only partial
state space is explored in the end. This improves time and
space efficiency.

3. Practical recovery plan generation – rGA adopts an enhanced
initial population policy, and selects a recovery plan with
near-optimal QoS; this enables the effective restoration of
correctness for the composite service. Furthermore, rGA
utilizes runtime information (such as variable value before
failure) and the structure of composite service, resulting in a
more realistic recovery plan with higher chance of success.

We have evaluated rGA with real-world case studies, which demon-
strate the effectiveness over existing approaches.
Outline. Section 2 presents a running example. Section 3 intro-
duces the QoS compositional model and the necessary terminology.
Section 4 presents rGA. Section 5 provides the evaluation of our
approach. Section 6 reviews the related work. Finally, Section 7
concludes the paper, and outlines future work.

2 Motivating Example
BPEL [5] is a de-facto industry standard for implementing compo-
sition of existing Web services by specifying an executable work-
flow using predefined activities. In this work, we assume that com-
posite services are specified using the BPEL language. Basic BPEL
activities that communicate with component Web services include
<receive>, <invoke>, and <reply>, which are used to receive
messages, execute component Web services and return values re-
spectively. In addition, a <pick> activity is used to wait for the
occurrence of exactly one message from a set of messages.

The control flow of services is defined using activities such as
<sequence>, <while>, and <if>, to provide sequential ordering,
loop, and conditional structure respectively. BPEL also supports
parallel execution of activities by using the <flow> activity. A
<scope> activity is used to contain other activities, and it can be
associated with a compensation handler, which specifies activities
for compensating the effects of executing the <scope> activity. In
this work, the <while> loops are assumed to be bounded and the
loop bound could be estimated using methods like [14].

We consider here a toy example of a Travel Booking Service
(TBS), where the goal is to help users to book for the transporta-
tion for their travel choice. The workflow of this example is illus-
trated in Figure 1a. Upon receiving the service request from the

book
airline 1
(ba1)

purchase
airline 1

insurance
(pi1)

onMessage airline1

book
airline 2
(ba2)

purchase
airline 2

insurance
(pi2)

onMessage airline2

receive from user
(rec)

accumulate
travel credit

(atc)toCredit
amount>1000

reply user
(reply)

/

notToCredit
amount≤1000

(a) Workflow for TBS

<pick ext:isControllable=true … >

...

<invoke operation=”ba2”… >

<compensationHandler>

<invoke operation=”cA2" … />

</compensationHandler>

</invoke>

...

</pick>

(b) Compensation for book car service

Figure 1: Transport Booking Service (TBS)

user (rec), a <pick> activity (denoted by ) is enabled to wait
for exactly one message from two possible messages (airline1,
airline2) provided by the user. If airline1 message is received,
a <flow> activity (denoted by ) is invoked: two activities ba1

and pi1 are invoked concurrently to book airline 1 and purchase
airline 1’s insurance respectively. Similar workflow applies when
airline2 message is received. Subsequently, an <if> activity
(denoted by ) is used to check whether the purchased amount is
larger than 1000. If yes, the accumulate travel credit (atc)
service is invoked to accumulate the travel credit that could be
used in the next purchase of the user. In either case, reply user
(reply) is called to return the result of purchases to the user.

Now, let us consider a scenario where the book airline 2 (ba2)
service is unreachable. Classic recovery strategies may retry it or
switch it to an alternating service [7]. We denote such recovery
strategy a point recovery strategy, as it involves retrying or switch-
ing of a particular service. There are cases where such a strategy
does not work. For example, ba2 service could be down, there-
fore retrying would not work. In addition, there might not exist
an alternating service that could be switched directly. In such a
case, another important strategy, which we denote as workflow re-
covery strategy, could be used. A flow recovery strategy involves
modifying the workflow by backtracking to a previous state, and
finding an alternative path for execution. To implement the flow
recovery strategy, one needs to devise a recovery plan specifying
how the compensation should be done, and which alternative path
to choose. A good recovery plan also needs to be QoS-aware. We
give below some of the QoS factors that need to be considered.
1) Cost: What is the cost for compensation, and what is the possi-
ble future costs that would be likely to incur in the recovery plan?
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2) Dependability: What is the chance of success of the recovery
plan?
3) Response time: What is the expected response time of the recov-
ery plan?

These issues will be addressed in the next sections.

3 QoS-aware Compositional Model
In this section, we define the QoS-aware compositional model used
in this work. We first give the formal definition of a composite
service.

DEFINITION 1 (COMPOSITE SERVICE). A composite service
M is a tuple (Var, V0, P0), where Var is a finite set of variables, V0

is an initial valuation that maps each variable to its initial value,
and P0 is the composite service process.

The semantics of composite service is captured using labeled
transition systems (LTSs), as discussed in the following.

3.1 Labeled Transition System
DEFINITION 2 (LABELED TRANSITION SYSTEM (LTS)). An

LTS is a tuple L = (S, s0,Σ, δ), where S is a set of states, s0 ∈ S
is the initial state, Σ is the universal set of actions, and δ : S×Σ×S
is a transition relation.

In this work, a state s is of the form (V,P), where valuation V is a
partial function that maps a variable to its value (in its domain), and
process P is a composite service process. Given a composite ser-
vice (Var, V0, P0), a sample valuation V is ({var1 7→ 1, var2 7→
⊥}, P0), where var1, var2 ∈ Var. var2 7→ ⊥ denotes that var2 is
undefined.

In this work, we assume that an error action Err (resp. an error
state sErr) always exists in Σ (resp. S) of any LTS. The error action
Err is used to model the error condition (e.g., component service
unreachable, functional correctness property violated). The error
state sErr is reachable from any state of S via action Err, i.e., ∀s ∈
S \ {sErr}, (s,Err, sErr) ∈ δ.

Given an LTS L = (S, s0,Σ, δ), we use s a→ s′ to denote
(s, a, s′) ∈ δ. Given a state s ∈ S, we denote byEnable(s) the set
of states reachable from s by one transition; formally,Enable(s) =

{s′|s′ ∈ S ∧ a ∈ Σ ∧ s a→ s′ ∈ δ}. An execution π of L is a
finite alternating sequence of states and actions 〈s0,a1,s1,. . .,sn−1,
an,sn〉, where {s0, . . . , sn} ∈ S and si

ai+1→ si+1 for all 0 ≤ i <

n. We denote by s0
a1→ s1

...→ sn−1
an→ sn the execution π. The

prefix of execution π is a fragment of π that starts from state s0 and
ends with a state si where i ≤ n. A complete execution is an exe-
cution starting in the initial state and ending in a terminal state. A
state s ∈ S is terminal if there does not exist a state s′ ∈ S and an
action a ∈ Σ such that s a→ s′ ∈ δ; otherwise, s is non-terminal.
In addition, we denote the LTS of a BPEL serviceM by L(M).

Example: Transport Booking Service
The LTS L(TBS) of the TBS example is shown in Figure 2. The
dashed and dotted arrows are not part of the semantics and they will
be explained later on. The formal semantics of BPEL activities in
this work is based on [16]. For example, consider the conditional
activity, Aatc / b . Areply , that is enabled at state s9, where the
activity Aatc is executed when the guard b = (amount > 1000)
is evaluated to be true, otherwise the activity Areply is executed.
From state s9 = ({amount 7→ ⊥}, Aatc / b . Areply), it has two
possible enabled states, which are s10 = ({amount 7→ ⊥}, Aatc),
and s11 = ({amount 7→ ⊥}, Areply) respectively. This is denoted
in the LTS as a state s9 with two outgoing transitions to states s10

1

2

3 4

5 6 8

Err

7

9

11

10

12

rec/τ

airline1/τ airline2/τ

ba1/cA1 pi1/cI1 pi2/cI2 ba2/cA2

pi1/cI1 ba1/cA1ba2/cA2 pi2/cI2
Err/τ

notToCredit/τ

reply/τ

toCredit/τ

atc/undoTC

Figure 2: LTS of TBS example
and s11. Noted that if b is defined, b is either false or true; there-
fore only one branch is explored in the LTS. Similarly, pick activ-
ities (<pick>) and parallel activities (<flow>) are specified using
two outgoing arrows to denote all possible execution orders of their
child activities. For the sake of readability, the error transitions Err
from all states (except state s8) to the error state sErr are not shown
in the LTS.

A state is a migration state if the state provides alternative choices
of execution, i.e., it migrates from the current execution to another
one. Migration states include the states where the <flow> activity,
<pick> activity or non-idempotent service invocation is enabled.
A service invocation is idempotent if any invocation with the same
input parameters give the same result. In Figure 2, valid migration
states from the state s8 are states s4, s2, and s1, shown in hatched
yellow circles.

3.2 Backward Actions
BPEL supports compensation mechanism [5] as an application-
specific way to reverse the activity that has already been completed.
The limitation of the default compensation mechanism is that it
is difficult to determine the system state after compensation, and
therefore it is hard to decide whether it would end up in a system
state where the functional properties could be satisfied.

To address this problem, we make an observation that every ac-
tion of BPEL can make up to two kinds of changes – internal
and external changes. Internal changes modify the valuation V
of current system state to a different valuation V ′, while external
changes modify the state of component services. External changes
could only be made by communication activities, e.g., <receive>,
<invoke>, and <reply>, since communication activities are the
only activities communicating with component services.

To undo internal changes, the valuation prior to executing for an
action is stored as a snapshot valuation; therefore during recovery
process, internal changes can be undone by reversing the current
valuation V ′ to the snapshot valuation V automatically. To allow
undoing of the external changes, users are required to specify a
compensation handler for each communication activity a. For ex-
ample, in Figure 1b, a compensation handler is specified for ba2
operation, which compensates the external changes made by ba2

by invoking the cA2 operation to cancel the flight that has been
booked. As a consequence, for every action a, we have a corre-
sponding backward action, abak, which “goes back" to the state
prior to execute action a by reversing the internal changes using
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q1 q2
Err

Σ/Err Σ

Figure 3: Monitoring automata
the snapshot valuation and external changes with the help of com-
pensation handler. An example of backward action is s8

cA2→ s4
in L(TBS), where the composite service compensates from state
s8 = (P, V ) to s4 = (P ′, V ′), by undoing the valuations from V ′

to snapshot valuation V and at the same time canceling the flight
that has been booked. We use τ to denote a backward action that
does nothing to compensate. A non-backward action is a forward
action; an example is s4

ba2→ s8. Given a pair of forward action af
and backward action ab, where s

af→ s′ and s′
ab→ s, we combine

them as single notation s
af/ab↔ s′, e.g., s4

ba2/cA2↔ s8. We use
ΣF and ΣB to denote the set of all possible forward actions and
backward actions respectively.

3.3 Monitoring Automata
In this section, we introduce how the functional properties are rep-
resented and verified. The functional properties are represented us-
ing deterministic finite automata (DFA), called here monitoring au-
tomata. Formally:

DEFINITION 3. A monitoring automatonA is (Q,Q0,Σ, δ, F ),
where Q is a set of states, Q0 ⊆ Q is a set of initial states, Σ is the
universal set of actions, δ : Q×Σ×Q is a transition relation, and
F ⊆ Q is a set of accepting states.

We use Σ∗ to denote a set of finite sequences of actions. Given a
monitoring automaton A, a sequence of actions a1a2 . . . an ∈ Σ∗

is accepted byA if there exists a path inA of the form q0
a1→ q1

...→
qn−1

an→ qn, where q0 ∈ Q0, qn ∈ F , ai ∈ Σ and ∀1 ≤ i ≤
n, (qi−1, ai, qi) ∈ δ. An execution π = s

a1→ s1
...→ sn−1

an→ sn
is accepted byA if the sequence of actions a1a2 . . . an is accepted
by A; otherwise it is rejected by A. We denote the set of accepted
sequences of actions as L(A).

Given a functional property Ps, A(Ps) denotes its monitoring
automaton. An execution is accepted by A(Ps) if it violates the
property Ps (otherwise it conforms to Ps). For example given a
functional property P1 “Unreachability of component service can
never happen in TBS”, where error action Err is triggered when
the component service is unreachable. The monitoring automata
for functional property P1 is shown in Figure 3. Given a set of
properties, we define the monitoring automata of a composite ser-
vice CS as MCS = 〈A(P1), . . . ,A(PN )〉, where Pi is a func-
tional property (for 1 ≤ i ≤ N ). Given an execution π in L(CS),
π satisfies MCS , denoted as π |= MCS , if π is rejected by all
automata A ∈ MCS . Otherwise, π violates MCS , denoted by
π 6|=MCS .

3.4 Recovery Plan
Consider again the LTS L(TBS) in Figure 2. An execution starts
from state s1 to state s8 as shown using dotted arrow ( ). At
state s4, the ba2 service is invoked and subsequently evolves into
state s8. Since the ba2 service is unreachable and timeout by the
BPEL runtime engine, this could lead the system to the error state
sErr. However, the service monitor discovers the anomalies, and
interferes the current process. To recover from the error, a recovery
plan is calculated. A recovery plan is a guideline of execution that
is used to compensate the current error (using backward actions)
to a migration state, and choose an alternative path that could lead
to the terminal state (using forward actions). In TBS, a possible

recovery plan r is to compensate from state sErr to migration state
s2 using backward actions, and go forward from state s2 to state
s12. The recovery plan of TBS, denoted by rTBS, is shown using
dashed arrow ( ).

DEFINITION 4. A recovery plan r is an execution sErr
a1→ s1

a2→
. . .

am→ sm
am+1→ sm+1

am+2→ . . .
an→ sn where sn is a terminal

state, sm is a migration state with 0 ≤ m ≤ n, ∀j 6 m, aj ∈ ΣB ,
and ∀ k > m, ak ∈ ΣF .

A prefix of the recovery plan r is a fragment of execution of r that
starts with sErr and ends with si where i ≤ n. Sometimes, we also
use the term partial recovery plan to denote a prefix of a recovery
plan. A suffix of a recovery plan r is the fragment execution of r
that starts with any state in the execution, and ends with terminal
state sn.
Controllability of a recovery plan. Consider the recovery plan
rTBS for TBS. At migration state s2, according to the recovery
plan rTBS, it needs to proceed to state s3. However, the semantics
of the <pick> activity chooses which branch to execute depending
on the messages (airline1 or airline2) that are received from
the user. In such case, it is a violation of semantics if we follow the
recovery plan. Therefore, we extend the <pick> activity with an
attribute isControllable by using BPEL extension attribute [5]
feature, so that users are allowed to specify which activities are
controllable by the recovery module. In our example, the <pick>
activity that is activated at state s2 is specified to be controllable,
by setting the isControllable attribute to true (see Figure 1b).
Since the <pick> activity is specified as controllable, the activity
would follow the recovery plan. Besides the <pick> activity, the
user also needs to specify the controllability of the <flow> and
<if> activities. If the <flow> activity is set to be controllable,
then the runtime engine would disregard the concurrent semantics
of the <flow>, and follow the recovery plan using sequential se-
mantics. If the <if> is set to be controllable, then the runtime en-
gine would disregard the valuation of guard condition and execute
the branches that are chosen by the recovery plan. Suppose that the
isControllable of the <flow> activity that is enabled at state s3
and the <if> activity that is enabled at state s9 is set to be true and
false respectively. In this case, the recovery process would proceed
until state s9. At state s9, since the <if> activity is uncontrollable,
the recovery process ends, and normal execution proceeds. During
normal execution, the <if> activity will decide to enter state s10
or s11 depending on the value of amount.

We call the maximal controllable portion of an execution its con-
trollable prefix. For the case of TBS, the controllable prefix is from
state sErr to state s9. We say that state s9 is an uncontrollable state,
which is a state that puts an end to the controllable prefix. Similarly,
we denote the portion of an execution starting from uncontrollable
state as its uncontrollable suffix. Although the uncontrollable suf-
fix (i.e., from state s9 to state s12) is not executed as part of the
recovery process, but it provides an insight on the executions that
starts from uncontrollable state. During the calculation of recovery
plan, the uncontrollable suffix could help to find a recovery plan
that ends up in an uncontrollable state that has a better executions
starting from it. Therefore, the composite service has higher chance
to conform with both functional and non-functional requirement
when recovery process ends and normal execution starts.

4 Service Recovery as a GA Problem
Our work is based on genetic algorithms (GA) for calculation of
the recovery plan.
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Figure 4: Typical flow of genetic algorithms
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Figure 5: Service monitoring and recovery framework

4.1 Preliminaries of Genetic Algorithms
GA [15] are stochastic search methods based on principles of bio-
logical evolution, inspired by the "survival of the fittest" principle
of the Darwinian theory of natural evolution. GA encode a poten-
tial solution to a specific problem using a simple chromosome-like
data structure, and apply genetic operators to these structures in
such a way to preserve critical information. GA are typically suited
for optimization problems where the problem space is large and
complex.

Figure 4 introduces a typical workflow of GA. A GA begins with
an (typically random) initial generation of chromosomes, which
we call it initial population. Genetic operators, such as selection,
crossover, and mutation, are applied on a generation, to evolve the
next generation of chromosomes. Genetic operators operate based
on the fitness of chromosomes – the highly-fit chromosomes have
higher chance to be evolved into the next generation. The fitness
of chromosomes is typically quantified by the fitness value of the
chromosome. The evolution continues until the terminating con-
dition. An example of the terminating condition could be that the
number of generations exceeds a predefined upper bound n ∈ Z>0.

We name our GA-based approach, rGA. To support on-the-fly
partial exploration of state-space in rGA, the recovery plan is en-
coded in dynamic-length chromosome, in contrast to the typical
fix-length chromosome. The details of encoding will be provided
in Section 4.3. Subsequently, we introduce the genetics operators
that manipulate the chromosomes in Section 4.4, and demonstrate
how the fitness value of a chromosome is calculated in Section 4.5.
To allow fast convergence of rGA, we propose an enhanced initial
population policy, as explained in Section 4.6. In the following,
we discuss the architecture of the service monitoring and recovery
framework that is used in this work.

4.2 Architecture
The architecture of our work is shown in Figure 5. The service
runtime engine (RE) is an environment used to execute the BPEL
composite services; here, we are using ApacheODE [3], an open-
source runtime engine for BPEL composite services. The Service
Monitoring and Recovery Module (SMR) contains the monitoring
automata,MCS , of the composite service CS that is executing in
the RE. During the execution of CS, the SMR intercepts the actions
from the RE. The intercepted actions are used to update the states
of all monitoring automatami ∈MCS that are stored in the SMR,
and these actions will also be recorded as part of the execution πCS
for the composite service CS. In addition, after the RE communi-
cating with a component service S, the SMR will update the QoS
database with the latest QoS information (e.g., response time and
availability) of component service S.

By checking the status of each monitoring automatami ∈MCS ,
the SMR could detect whether the functional properties of CS are
violated. If so, service recovery is initiated to calculate the recov-

0 1 2 index

b-gene f-genes

2 2 1
3
3
4 5 6 7 8
6 5 7 84

initial expanded

0 1 2 3 4 5 6 7 8 index

(a) Chromosome for recovery plan rTBS

s10s3 s4 s5 s6 s9 s11 s12

0 1 2 3 4 5 6 7 8 index

initial expanded

(b) Global state array

Figure 6: Genetic encoding of recovery plan
ery plan. The recovery plan will be calculated based on the execu-
tion πCS , and estimated QoS attributes from QoS database. Subse-
quently, the recovery plan would be returned to RE and RE would
resume with the recovery according to the recovery plan. The de-
tails of the calculation of recovery plan will be introduced in the
rest of this section.

4.3 Genetic Encoding of a Recovery Plan
We now introduce the representation of recovery plans as chromo-
somes. The technical challenge when developing the representa-
tion is that classic GA use fixed-size chromosomes, while the re-
covery plan lying within an LTS has an unknown number of states
and transitions. Providing a unique representation of a recovery
plan requires an exhaustive exploration of the LTS in order to know
the chromosome length required to encode the recovery plan; this
might encounter the infamous state-explosion problem. In order to
address this problem, we propose dynamic-length chromosomes to
encode the recovery plan, where the length of chromosomes is ad-
justed adaptively during the (partial) exploration of the LTS for the
optimal recovery plan.

We adopt here array-based chromosomes. The chromosome in Fig-
ure 6a represents the recovery plan rTBS. Given a chromosome of
length n, array indices are numbered from 0 to n−1. A gene is
an element of the array, and the value of a gene ranges over non-
negative integer number. Given a recovery plan, there are two parts:
backward execution and forward execution. The backward execu-
tion contains only backward actions, followed by the forward ex-
ecution that contains only forward actions. Similarly, the genes
are divided into two parts: a b-gene (backward-gene) and a set of
f-genes (forward-genes), to represent the backward execution and
forward execution respectively. The b-gene is located at index 0 of
the chromosome, and f-genes are located from indices 1 to n − 1.
We demonstrate genetic encoding of recovery plan using the exam-
ple shown in Figure 2. The value of b-gene shows the number of
backward actions are used to compensate. Assume the value of the
b-gene is 3: compensating three steps from error state sErr would
reach the migration state s2.

After compensation, we consider forward actions. The forward
execution is encoded differently from the backward execution. To
encode the forward execution, we need to make use of a global
state array (see Figure 6b) which is shared by all chromosomes. In-
tuitively, the values in f-genes give the priority values of the states
in state-array. We introduce f-genes and state-array using the re-
covery plan rTBS that has been compensated to migration state s2
according to the value of b-gene. Initially, f-genes and the state ar-
ray are empty. From migration state s2, two states s3 and s4 are
enabled, calculated by EnableStates(s2). Since these two states do
not exist in the state array, they are added to the array at indices 1
and 2 (index 0 is always left empty because of b-gene). At the same
time, assume two values, 2 and 1 are added to f-genes. Details on
how these values are decided will be given in Section 4.6. Values
in f-genes represent the priority values of the states in state-array at
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Figure 7: Genetic operations

Algorithm 1: Crossover
input : Chromosomes P1, P2

output: Chromosomes C1, C2

1 C1 ← P1 ; C2 ← P2;
2 if rand(0, 1) ≤ Pcross then 〈C1, C2〉 ← pCrossOver(C1, C2);
3 return 〈C1, C2〉;

the same index – states s3 and s4 have priority values of 2 and 1 re-
spectively. Since state s3 has higher priority than state s4 (2 > 1),
state s3 is chosen to be the next state in the recovery plan. This
process goes until state s6. At this point, both the state array and
chromosome are dynamically expanded to contain additional states
and their priority values.

4.4 Genetic Operators
GA make use of crossover and mutation to create new chromo-
somes for the next generation of a population. We introduce these
two operators, adapted from [17].

Crossover. We make use in rGA of a position-based crossover op-
erator. Two new chromosomes are produced from each crossover
operation. The algorithm of crossover operator is shown in Al-
gorithm 1. At line 2, rand(0, 1) randomly chooses a real number
between 0 and 1. If the number is less than Pcross then it performs
the positional crossover pCrossOver (line 2) on chromosomes P1

and P2.
We illustrate the positional crossover pCrossOver, using an ex-

ample shown in Figure 7a. In Figure 7a, a new chromosome C1

is produced by applying positional crossover pCrossOver to chro-
mosomes P1 and P2. The b-gene of C1 is created by choosing the
b-gene fromP1 orP2 randomly. The f-genes ofC1 are produced by
taking some f-genes from P1 at random positions; in the example,
we take f-genes at positions 2, 5, and 6 from P1. Subsequently, the
empty positions of C1, viz., positions 1, 3, and 4, are filled up by
performing left-to-right scan on P2, and the unused numbers will
be used to fill in the empty positions. The production of another
new chromosome C2 (not shown in the graph) is symmetric to the
production of C1. For the b-gene, the crossover operator chooses
from P2, as P1 has been chosen by C1. Subsequently, it takes the
f-genes positions 2, 5, and 6 from P2, and fills in the empty position
by performing left-to-right scan on P1. The resulting chromosome
of C2 is 〈1, 3, 5, 1, 6, 2, 4〉.

If the number is greater than Pcross, it simply returns the chromo-
somes P1, and P2 at line 3.

Mutation. The swap-based mutation operator is used for the muta-
tion operation. The algorithm of mutation operator is given in Al-
gorithm 2. At line 4, getBackwardSteps() returns the set of num-
bers for b-gene that could lead to a migration state, and the rand
function chooses one of them randomly. At line 7, the value of the
gene at position i is randomly swapped with a gene from position
1 to n− 1.

Figure 7b shows how a new chromosome P ’ is produced by ap-
plying the mutation operator to chromosome P . The b-gene is mu-
tated by randomly picking a number that could compensate to a

Algorithm 2: Mutation
input : Chromosome P
output: Chromosome C

1 C ← P ;
2 n← |P |;
3 if rand(0, 1) ≤ Pmut then
4 C[0]← rand(getBackwardSteps()); // for b-gene

5 for i = 1 to n− 1 do
6 if rand(0, 1) ≤ Pmut then
7 swap(C[i], C[randInt(1, n− 1)]); // for

f-genes

8 return C;

migration state. For f-genes, two genes are chosen randomly and
their values are swapped.

4.5 Calculating the Fitness Value
4.5.1 QoS Optimality
In this work, we focus on quantitative QoS attributes that can be
quantitatively measured using metrics. There are two classes of at-
tributes, namely positive ones (e.g., availability) and negative ones
(e.g., response time). Positive attributes have a positive effect on
the QoS, and therefore need to be maximized. Conversely, nega-
tive attributes need to be minimized. For simplicity, we only con-
sider negative attributes in this work, since positive attributes can
be transformed into negative attributes by multiplying their value
with −1. Given n QoS attributes of a service s, we use an attribute
vector Qs = 〈q1(s), . . . , qr(s)〉 to represent it, where qi(s) is the
ith QoS attributes of Qs.

A composite service S makes use of a finite number of compo-
nent services to accomplish a task. Let C = {s1, . . . , sn} be the
set of all component services that are used by S. The composite
service communicates with component services using the commu-
nication activities, which includes <invoke> and <onMessage>
activities. Given an action a belonging to the communication ac-
tivity, S(a) denotes the component service the communication ac-
tivities communicates with.

Given an execution π = s0
a1→ s1

a2→ . . .
an→ sn, we use a

vector Q′π = 〈q′1(π), . . . , q′n(π)〉 to represent its aggregated QoS
attributes, where q′k(π) is the kth aggregated QoS attributes. q′k(π)
is calculated as follows:

q′k(e) = Fk
a∈R

(
qk
(
S(a)

))
, (1)

with R = {ai | i ∈ {1, . . . , n} ∧ ai is an action belonging to syn-
chronous communication activity} and Fk is the QoS aggregation
function for attribute k, defined below:

Response time Availability Throughput
n∑
i=1

q(si)
n∏
i=1

q(si)
n

min
i=1

q(si)

Other QoS attributes share the similar aggregation functions, e.g,
the cost attribute has the same aggregation function as the response
time attribute. Component services have multi-dimensional attributes,
and we need a methodology to facilitate their comparison in term
of their QoS. In this work, we use a simple additive weighting
(SAW) technique [28] to obtain a score for multi-dimensional at-
tributes. This simple additive weighting technique uses two stages
for producing the score. The normalization stage normalizes the
QoS attribute values so that they are independent of their units
and range to allow comparison. The weighting stage allows users
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Algorithm 3: Fitness
input : Population popul, chromosome csome
output: Fitness value of csome

1 Exec← ∅ ; state← failure state;
// for b-gene

2 for int i = 1 to ind[0] do
3 Exec← Exec _ state; state← compensate(state);

4 Exec← Exec _ state;
// for f-genes

5 states← EnableStates(state);
6 while true do
7 foreach s ∈ states do
8 if s.id = ∅ then
9 currId← currId + 1;

10 if currId ≥ chromo_size then
11 eArr← createNewGenes(csome, stateArr);
12 foreach csome ∈ popul do
13 csome← csome _ eArr;

14 s.id← currId;

15 state← arg maxs∈states(csome[s.id]);
16 Exec← Exec _ state; states← EnableStates(state);

17 feasible← verify(M,Exec); ncState← getNcState(Exec);
18 ncState.execs.add(getNcExec(Exec));
19 if feasible then
20 return 0.5 + 0.5 ∗ (G(getCExec(Exec)) +G(ncState));
21 else
22 return 0.5 ∗ (G(getCExec(Exec)) +G(ncState));

to specify their preferences on different QoS attributes. Normal-
ization of aggregated QoS of an execution π is done by compar-
ing with the maximum and minimum aggregated QoS. The maxi-
mum (resp. minimum) aggregated QoS can be obtained by aggre-
gating maximum (resp. minimum) QoS attribute values. Formally:
Qmin(k) = Fmi=1Kmin and Qmax (k) = Fmi=1Kmax with Kmin =
mins∈cs qk(s) and Kmax = maxs∈cs qk(s), where Qmin(k) and
Qmax (k) are the minimum and maximum aggregated values for
kth QoS attribute of execution π, m is the number of states in the
longest execution of a composite service, and CS is the set of all
component services that are used by the composite service. m can
be easily obtained with static analysis on the composite service.

Suppose each service has r QoS attributes; the QoS optimality of
the execution π, Q(π), is calculated as follows using SAW:

Q(π) =


r∑
k=1

Qmax (k)− q′k(π)

Qmax (k)−Qmin(k)
· wk if Qmax (k) 6= Qmin(k)

1 otherwise
(2)

where wk ∈ R+ is the weight of qk and
∑r
k=1 wk = 1.

Given an uncontrollable state s, the QoS optimality of the state s,
Q(s), is the average value of the QoS optimality of execution that
starts from the state s, i.e.:

Q(s) =
1

|E|
∑
e∈E

Q(e) (3)

where E is the set of execution that starts from state s and ends in
a terminal state. Given Er a controllable prefix of recovery plan r,
and Sr an uncontrollable state of r, the QoS optimality of r, Q(r),
is:

Q(r) = Q(Er) +Q(Sr) (4)

whereQ(Er) andQ(Sr) are calculated using Equation (2) and Equa-
tion (3) respectively.

4.5.2 Global Optimality
The global optimality of a recovery plan concerns both the QoS
optimality and whether the recover plan satisfies the functional re-
quirements. The global optimality G(r) of a recovery plan r is:

G(r) =

{
0.5 + 0.5 ·Q(r) if r |=M
0.5 ·Q(r) otherwise.

(5)

The global optimality for a recovery plan such that r |=M (resp.
r 6|=M) has its value ranging from 0.5 to 1 (resp. 0 to 0.5). There-
fore, it can be guaranteed that a recovery plan satisfying the func-
tional requirements has a higher global optimality value than any
recovery plan violating the functional requirements.

DEFINITION 5. Given a composite service CS, and the set of
all feasible recovery plans Rf , the optimal recovery plan rm is the
feasible recovery plan with the maximal optimal value, i.e., rm =
arg maxr∈Rf

(G(r)).

In the following, we present a heuristic method rGA, used to find
the optimal recovery plan.

4.5.3 Fitness Function
Given a chromosome, we need a metric to decide its worthiness
as a candidate solution. The fitness function, denoted as Fitness ,
is used to provide the evaluation, and returns a value called fit-
ness value that represents the worthiness of the candidate solution.
The fitness value is typically used by the selector to decide which
pair of chromosome instances will be chosen for mating. Highly
fit chromosomes relative to the whole population will have higher
chance of being selected for mating, whereas less fit chromosomes
have a correspondingly low probability of being selected. Some
chromosomes generated by the crossover and mutation operations
might be infeasible, i.e., they do not satisfy the functional proper-
ties of the composite service. We do not simply discard infeasible
chromosomes as they might provide candidates that are essential
for the optimal solution. Therefore, the strategy is to allow infeasi-
ble chromosomes to stay in the population, but with a lower fitness
value compared to any feasible chromosome. The fitness value of
the chromosome Cr is the global optimality of the recovery plan r
that it represents, i.e., Fitness(Cr) = G(r).

The fitness function is computed using Algorithm 3. Lines 7-14
are the procedure discussed in Section 4.3 for the purpose of asso-
ciating states in LTS with f-genes on the chromosome. At line 8,
s.id is the index of f-gene on the chromosome that state s has been
associated with. At line 11, if the current size of the chromosome is
insufficient for encoding the recovery plan, an extension array eArr
is created, populated with unused and unique priority values. The
new states that are encountered will be added to the global state ar-
ray stateArr at the same time. Subsequently, all chromosomes in
the population are extended with eArr (line 13). At line 15, the en-
abled state with maximal priority value is chosen as the next state.
At line 17, verify checks whether the execution could satisfy M
using approach discussed in Section 3.3; then, getNcState gets the
uncontrollable state of the execution. At line 18, getNcExec gets the
part of execution Exec that starts from the uncontrollable state, and
is added to ncState.execs, which is a set of uncontrollable suffixes
that are associated with the ncState. At lines 20 and 22, getCExec
gets the controllable prefix of the execution. The calculation of fit-
ness value in lines 19 to 22 is according to Equation (5). For the
calculation of Q(s) for uncontrollable state s using Equation (3),
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Algorithm 4: Initial Population
input : n (population size), l (chromosome size)
output: An initial population P

1 P ← 〈c1, c2, . . . , cn〉; stateArr← 〈∅1, ∅2, . . . , ∅l〉 ;
2 foreach ci ∈ P do
3 ci ← 〈01, 02, . . . , 0l〉; len← |stateArr|;
4 ci[0]← rand(1, len) ;
5 ci[1 . . . len] = shuffle({1, . . . , len});
6 S ← EnableStates(R(c)) ;
7 if rand(0, 1) ≤ PEIPP then
8 Sr ← rankWithFitness(R[c], S \ stateArr);
9 foreach s ∈ Sr do

10 stateArr.Add(s); len← |stateArr|;
11 ci[len]← len;

12 else
13 stateArr.AddAll(S \ stateArr);
14 ci[len . . . |stateArr|]← shuffle({len, . . . , |stateArr|});

since we may not have exact set E due to the partial exploration of
the state space, the setE is approximated using the set of execution
starts from s that we have explored so far, which is the set s.execs
(calculated in line 18).

4.6 Enhanced Initial Population Policy
We propose an Enhanced Initial Population Policy (EIPP) to over-
come shortcomings resulting from randomness of genetic algorithm,
such as slow convergence and great variance among the running re-
sults. The idea behind is that, by adding the chromosomes likely to
contribute to high fitness values to the initial population, we have a
higher chance to converge faster to an optimal value.

We introduce the EIPP using the recovery plan rTBS. Suppose
we now have value 3 in the b-gene, and the recovery plan would go
from state sErr to state s2. At state s2, there are two enabled states –
states s3 and s4. Assume states s3 and s4 do not have their priority
values assigned yet. EIPP decides the priority values based on the
global optimality values of the partial recovery plans. In particular,
we compare the global optimality values of partial recovery plan
rp from error state sErr to states s3 and s4 respectively. The global
optimality values of partial recovery plan rp, G(rp), is calculated
using Equation (5) with Q(rp) calculated using Equation (2).

Note that assigning priority values according to G(rp) does not
always provide the optimal recovery plan. Suppose the partial re-
covery plan from state sErr to s3 and s4 is r3p and r4p respectively.
Assume G(r4p) > G(r3p); in such a case, it would always require
invoking the ba2 from state s4 or from state s7. However, ba2
has a low availability value, since it was previously unresponsive.
Therefore, we would end up in getting a recovery plan of low global
optimality value; we denote this as the locality problem.

To address this problem, the priority values are assigned based on
the global optimality value of the partial recovery plan with a prob-
ability, denoted as EIPP probability PEIPP ∈ R∩(0.5, 1]. The value
EIPP of the probability PEIPP is strictly larger than 0.5 to make the
EIPP in favor of assigning the priority values for f-genes based on
the global optimality values of partial recovery plans. Suppose that
PEIPP = 0.7 andG(r4p) > G(r3p), given a population of 20 chromo-
somes, on average 6 chromosomes would choose to evolve to state
s4 from state s2, which would lead to a recovery plan with better
global optimality value. During the evolution, the poor recovery
plans that choose state s4 from state s2 would be eliminated and
the good recovery plans that choose state s3 from state s2 would be

Algorithm 5: GA Algorithm
input : Abstract LTS LTS
output: Recovery plan Rmax with the best global optimality

value over all generations

1 popul← init_popul(pop_size, chromo_size);
2 gen← 1 ; Rmax ← ∅ ;
3 repeat
4 newPopul← max_ind(popul);
5 if fit(max_ind(popul)) > fit(Rmax) then
6 Rmax ← max_ind(popul);

7 foreach 〈P1, P2〉 ∈ sample(popul, pop_size/2) do
8 〈C′1, C′2〉 ← crossover(P1, P2);
9 〈C1, C2〉 ← 〈mutation(C′1),mutation(C′2)〉;

10 newPopul← newPopul ∪ {C1, C2};
11 popul← newPopul;
12 gen← gen + 1;
13 until gen > max_gen;
14 return Rmax

kept. Therefore, the EIPP probability could effectively mitigate the
locality problem.

The algorithm for initializing the population with EIPP is pro-
vided in Algorithm 4. Line 1 initializes the population with n chro-
mosomes, which have length l with values of genes set to 0 (line 3).
The state array stateArr is also initialized to length l, where ∅i
denotes an uninitialized value for the ith position. The function
rand(1, len) returns a random number n ∈ Z ∩ [1, len] and assigns
it to the b-gene (located at index 0) of chromosome ci (line 3).
Subsequently, we shuffle the numbers of the set {1, . . . , len} ran-
domly, and assign them to the f-genes from index 1 to len (line 5).
Subsequently, we get the enable states of partial recovery plan that
represented by c, denoted as R(c), and assign them to variable S
(line 6). If the random number r ∈ R∩[0, 1] is not larger than PEIPP

(line 7), then the rankWithFitness function sorts the enabled states
S not in the state array stateArr by their fitness values in ascending
order, and assigns them to variable Sr . Sr is an ordered sequence
of states ranked by the fitness values of their partial recovery plans
(line 8). We add each state s to the state array, and assign the corre-
sponding f-genes with value |stateArr| just after adding s – this will
effectively allow us to assign the priority values in the same order
as their fitness values (lines 9–11). Otherwise, all the enable states
that are not in state array stateArr are added to stateArr. Subse-
quently, we shuffle the numbers of the set {len, . . . , |stateArr|} ran-
domly, and assign them to the f-genes from index len to |stateArr|
(lines 13–14).

4.7 rGA Algorithm
The rGA algorithm is given in Algorithm 5. At line 1, the ini-
tial population is initialized using the EIPP given in Algorithm 4
with the default population size pop_size and the default chromo-
some size chromo_size. At line 4, the next population newPopul
is extended with the chromosome with maximal fitness value in
the current population max_ind(popul), due to the elitist selection
adopted. At lines 5–6, the recovery plan with maximal fitness value
so far is assigned to Rmax. At line 7, pop_size/2 pairs of chromo-
somes (P1, P2) are sampled using the selection operator discussed
in Section 4.4. At lines 8 and 9, crossover and mutation operations
are applied to (P1, P2), and added to the population of the new gen-
eration newPopul. This process repeats until it has gone through the
maximum number of generations specified by max_gen.
Soundness. For rGA to work correctly, we need to ensure that
every chromosome uniquely represents a recovery plan (unique en-
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Figure 8: Convergence rate
coding property), and there does not exist any recovery plans that
rGA avoid exploring (non-blocking property). We show rGA satis-
fies these two properties in the following.

LEMMA 1 (UNIQUE ENCODING). Given any state in LTS as
a starting state, the proposed chromosome uniquely encodes a re-
covery plan.

PROOF. For the backward execution, given that the graph is
acyclic and the compensation is deterministic (since there is a de-
terministic execution from the initial state to the error state sErr

where the failure occurs), the value of the b-gene uniquely deter-
mines the migration state. For the forward execution, once a state is
added to the state array, it remains in its position in the state array.
Therefore, starting from the migration state, we could choose an
execution deterministically based on the priority values in f-genes.
Combining both, we show that the chromosome can uniquely de-
termine an abstract recovery execution.

LEMMA 2 (ACYCLICITY). Given any state in LTS as a start-
ing state, rGA does not avoid the exploration of any recovery plan.

PROOF. This holds due to the fact that there are no recursive ac-
tivities in BPEL, and due to the assumption on the loop activities for
which the upper bound on the number of iterations is known.

5 Evaluation
We conducted experiments to evaluate our rGA approach. Specifi-
cally, we attempted to answer the following research questions.
RQ1. How does the performance of rGA compare with the state-
of-the-art? We analyze how long rGA takes to calculate a recovery
plan, and compare the performance with the state-of-the-art.
RQ2. How is the quality of recovery plan that is selected by rGA?
We measure the quality using the formula

quality =
G(r)

G(rexact)
(6)

where G(r) and G(rexact) are the global optimality values of re-
covery plan returned by the rGA method and the exact method
(i.e., the method exhaustively enumerating every possible recovery
plans), respectively.
RQ3. How scalable is rGA? To evaluate the scalability of rGA,
we use the parameterized Large Scale Service (LSS), and Travel
Booking Service (TBS) that contain the combinatorial explosion of
recovery plans given large values for parameters. In such cases, it
is impractical to solve by enumerating all recovery plans.
Experimental Setup. The experiments were conducted on an In-
tel Core I5 2410M CPU with 4 GiB RAM, running on Windows 7.
The mutation and crossover rates for rGA are set to 0.01% and 0.9%
respectively. In addition, the population size is set to 20, the num-
ber of generations is set to 20, and PEIPP is set to 0.7. The algorithm
rGA could terminate earlier if it discovers that the fitness value does

rGA SAT

case study time (s) quality gen. length time (s)

FV 0.7 1 10 42 3.12

FC 0.12 1 6 20 1.38

TAS 0.22 1 6 13 0.27

TBS(2) 0.47 1 6 N/A N/A

TBS(30) 0.54 1 8 N/A N/A

TBS(60) 0.87 1 8 N/A N/A

TBS(120) 1.24 1 10 N/A N/A

TBS(200) 1.97 1 10 N/A N/A

LSS(30) 0.85 0.97 7 N/A N/A

LSS(60) 0.96 0.97 7 N/A N/A

LSS(80) 1.42 0.96 8 N/A N/A

LSS(120) 1.92 0.95 8 N/A N/A

LSS(200) 2.57 0.94 8 N/A N/A

Figure 9: Experiment with rGA
not improve for over 6 generations. To evaluate rGA, we explicitly
construct an execution that violates the functional properties and
leads to the error state sErr, and explore the recovery plan from the
error state sErr using rGA. Since rGA could perform differently for
each experiment, we took the average of 50 experiments for each
case. In addition, after the fitness value is calculated for a chromo-
some, we cache the fitness value of the chromosome, so that the
fitness value for the same chromosome does not need to be recalcu-
lated. We now introduce the case studies used for the experiments.
To answer the previous research questions, we evaluate rGA using
five case studies described in the following.

Flickr [4] is a Web application allowing users to upload and share
their photos on the Web. Two known vulnerabilities in the Flickr
Web application [9], namely Flickr Visibility (FV) and Flickr Com-
ment (FC), are used to evaluate the effectiveness of our approach.
Both FV and FC have been translated to a BPEL model (see [22]).

Flickr Visibility (FV). The options for the photos’ visibility are
public, family and private; users can set the visibility through the
setPerms() function. There is a reported issue [1] on this function
to fail on changing the visibility to family, after uploading the pho-
tos with an initial private visibility. The BPEL model contains 28
activities and 8 with explicit compensation; its LTS consists of 36
states and 86 transitions. The functional property to be monitored
for FV is “Flickr guarantees the photos to have the visibility set by
the user”.

Flickr Comment (FC). Flickr allows authorized users to add com-
ments to private and family photos; for public photos, all users are
allowed to comment. There is a reported issue [2] on the failing
sequence of a single call to addComment() immediately after an
upload() operation. The BPEL model contains 16 activities and 6
activities with explicit compensation; its LTS consists of 21 states
and 51 transitions. The functional property to be monitored for FC
is “if a user adds comments to a public photo, the comments should
be added successfully into the photo’s comments”.

Trip Advisor System (TAS). This case study is introduced in [23].
The objective of TAS is to schedule the trip for user. It consists of
25 states and 34 transitions. The functional property to be mon-
itored for TAS is “the user cannot book both a limousine and an
expensive flight”.

Travel Booking Service (TBS). This is the example used through-
out the paper. In the case study it involves two <onMessage> for
two airline services. We parameterize the case study using n of
<onMessage> that for n distinct airline services, each of them
involving airline and insurance booking. We denote TBS with
k <onMessage> activities by TBS(k). For example, the example
used in this paper has k = 2. TBS consists of 7 + 3k states and
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8 + 5k transitions. The functional property to be monitored for
TBS is “the service always replies to the user”. TBS contains a
non-responsive airline booking service ba2, invoking ba2 would
lead to the error state sErr, which violates the functional property.

Large Scale Service (LSS). To better evaluate the scalability of
our approach, we built a BPEL example with a sequence of k <pick>
activities. Each <pick> activity consists of two <onMessage> ac-
tivities, where one has a good QoS, while the other has a bad QoS.
The optimal recovery plan in such a scenario will always consist of
the activities with good QoS. We denote LSS with k <pick> ac-
tivities by LSS(k). LSS(k) contains at least 2k states and 2k unique
candidate recovery plans. The functional property to be monitored
for LSS is “the service always replies to the user”.

Results. We report the results of evaluating the case studies in Fig-
ure 8 and Figure 9. Figure 8 shows the global optimal values of
the case studies by varying the number of generations, and we could
observe the convergence rate for different case studies. It demon-
strates the fast convergence rate for all case studies.

Figure 9 shows the details of evaluation for the cases studies.
The “time (s)” column reports the time in seconds for rGA to pro-
duce the recovery plan. The “quality” column reports the quality of
the recovery plan found by rGA calculated using Equation (6). The
“gen.” column reports the number of generations that are used to
search for recovery plans. We compare the results with [23], which
we call SAT, since their approach uses a SAT solver to find the best
recovery plan. The objective of SAT is to find a set of recovery
plans that are functionality correct, and the user is responsible for
selecting recovery path manually. In addition, Their method is re-
quired to specify the maximum length k for the recovery plan, i.e.,
only the recovery plans less than k and fulfilling the functional re-
quirements are returned. The “length” column contains the value
for k. In contrast, in our approach, all recovery plans are explored,
and functionality correct recovery plan is chosen automatically in
term of their QoS before returning to the user. We compare our re-
sults with theirs using their results on three case studies – FV, FC,
and TAS they have reported in [23]. For other case studies, their
results are unavailable (denoted by N/A). Our method searches the
entire state space for optimal recovery plan, without restricting the
length of the recovery plan. Therefore, to facilitate fair compari-
son, we only compare with SAT, using the largest k values for the
case studies that have been reported in [23].

Our results have shown to outperform theirs for all case studies.
In addition, most recovery plans that returned by rGA are optimal,
i.e., quality=1, except in the LSS case study, which has subopti-
mal quality, i.e., with quality closed to 1. In addition, we observe
that although LSS(80) and LSS(200) used the same number of gen-
eration, but LSS(200) spent more time than LSS(80). This is be-
cause LSS(200) contains more states than LSS(80), which results
in longer chromosome and slower processing time. The same ob-
servation can be applied, e.g., to TBS(120) and TBS(200).

Answer to Research Questions. For research questions RQ1–
RQ3, the results in Figure 8 and Figure 9 show that rGA is efficient
to offer a recovery plan of good quality, and it is scalable to large
composite service.

6 Related Work
This work is related using genetic algorithm to fix software faults.
Weimer et al. [27] and Arcuri et al. [6] investigate genetic program-
ming as a way to automatically fix software faults. Their approach
assumes the existence of test cases to test for the functional correct-
ness of chromosomes. In contrast, our method generates a recovery
plan, and the functional correctness is checked using the monitor-

ing automata; this is a more lightweight procedure, and it is shown
to be suitable for executing it online (see Section 5).

This work is related to research on fault-tolerant for service com-
position. Dodson [12] transforms the original BPEL process into a
fault-tolerant one at compiling time, by considering common fault
tolerance patterns. This approach introduces redundant behavior
to BPEL programs, which may slow down the performance. In
contrast, our service monitoring executes at BPEL runtime, which
avoids such redundancy. Carzaniga et al. [8] propose the use of
workaround by considering the equivalent sequences of faulty ac-
tion in order to provide a temporary solution to mask the effects
of the faults on applications. The approach generates all possible
recovery plans, without prioritizing them. In contrast, our method
filters out infeasible recovery plans; as for the feasible ones, they
are ranked by QoS of involved component services.

This work is related to automated recovery for service compo-
sition. Baresi et al. [7] propose an idea of self-supervising BPEL
processes by supporting both service monitoring and recovery for
BPEL processes. They propose a backward strategy, which is to re-
store the system to a previously correct state. However, the strategy
does not consider the potential satisfaction of functional properties,
and neither is it QoS-aware. Simmonds et al. [23] propose an ap-
proach to divide a recovery plan to compensate the failures, and
guide the application towards a desired behavior. This work is the
closest to ours, and our approach has several advantages over theirs.
Firstly, the method in [23] requires the exhaustive LTS exploration
for the BPEL process by using a SAT solver for calculating the re-
covery plan. Our approach only requires a partial exploration of
the LTS. Also, their method does not take into account the QoS of
component services explicitly. Our approach accounts for various
QoS aspects of a component service explicitly, and allows users to
weight them according to their preferences.

This work is related to self-adaptation of service composition.
In [21], Mukhija and Glinz propose an approach to adapt an ap-
plication by recomposing its components dynamically, which is
implemented by providing alternative component compositions for
different states of the execution environment. Ghezzi et al. [18] de-
scribe an ADAM model-driven framework for adaptation by choos-
ing a path that could maximize system’s non-functional properties.
These works are orthogonal to our work, as they are related to pro-
viding runtime adaptation for normal execution based on the run-
time and contextual information, while our work is related to failure
recovery.

In [26], we propose an automatic approach to synthesize local
time requirement based on the given global time requirement of
Web service composition. In [10], we propose an approach to ver-
ify the functional and non-functional requirements of Web service
composition. Different from our previous works, this work is fo-
cused on automatic synthesis of recovery plan.

7 Conclusion and Future Work
In this paper, we address the problem of service recovery by propos-
ing a new method (rGA) based on genetic algorithms. The method
improves the efficiency of existing methods in flow-based recov-
ery strategy by allowing partial exploration of the LTS for near-
optimal recovery plan. In addition, the recovery plan selection is
QoS-aware; therefore, it allows effective recovery from the failure
state. As future work, we plan to investigate how to combine rGA
with other techniques, such as differential evolution [25].
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