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Auditing Anti-Malware Tools by Evolving Android
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Abstract—Although a previous study shows that existing Anti-
malware tools (AMTs) may have high detection rate, the report
is based on existing malware and thus it does not imply that
AMTs can effectively deal with future malware. It is desirable
to have an alternative way of auditing AMTs. In our previous
work, we use malware samples from Android malware collection
GENOME to summarize a malware meta-model for modularizing
the common attack behaviors and evasion techniques in reusable
features. We then combine different features with an evolutionary
algorithm, in which way we evolve malware for variants. Previous
results have shown that the existing AMTs only exhibit detection
rate of 20%-30% for 10,000 evolved malware variants. In this
paper, based on the modularized attack features, we apply the
dynamic code generation and loading techniques to produce
malware so that we can audit the AMTs at runtime. We
implement our approach, named MYSTIQUE-S, as a service-
oriented malware generation system. MYSTIQUE-S automatically
selects attack features under various user scenarios and delivers
the corresponding malicious payloads at runtime. Relying on
dynamic code binding (via service) and loading (via reflection)
techniques, MYSTIQUE-S enables dynamic execution of payloads
on user devices at runtime. Experimental results on real-world
devices show that existing AMTs are incapable of detecting most
of our generated malware. Last, we propose the enhancements
for existing AMTs.

Index Terms—Android feature model, defense capability, mal-
ware generation, dynamic loading, linear programming

I. INTRODUCTION

ACCORDING to a report from AV-TEST [1], the inde-
pendent IT-security lab, 26 off-the-shelf anti-malware

tools (AMTs) show high detection rate (DR) of above 90%
for existing Android malware. This test report proves that
the mainstream signature-based ATMs can effectively detect
existing malware, provided with a comprehensive list of
malware signatures. However, generally, the development
of AMTs usually lags behind the advance of new attack
or malware variants. The consequence of the arms race in
Android security leads to the sophisticated malware, which may
contain a variety of attack behaviors and evasion techniques
(e.g., multiple-level obfuscation [2, 3], new transformation
attacks [2, 3] and collusion attacks [4, 5]). Besides, dynamically
loaded malware is becoming increasingly severe. Existing
benchmarks GENOME [6] and DREBIN [7] are not updated to
the aforementioned attack or evasion features.
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Several existing studies relate to Android malware generation.
DROIDCHAMELEON [2, 3] integrated three types of transfor-
mation techniques to generate obfuscated malware, which were
used to audit the AMTs. ADAM [8] adopted repackaging
and obfuscation techniques to generate different variants for a
malware sample. Besides new evasion techniques, mutation is
also a common approach to generate new malware. Aydogan
and Sen [9] proposed to generate Android malware with a
genetic algorithm. The newly generated malware came from the
crossover and mutation of malware in GENOME [6], and they
conducted experiments to show that the new malware variants
can easily bypass the detection of AMTs. Cani et. al. [10] used
µGP to automatically create new malware undetectable for
AMTs, and injected malicious code into benignware to create
a Trojan horse.

To sum up, the aforementioned studies mainly adopt new
evasion techniques or mutate malware samples for new pos-
sible variants. As shown in the study [10], using genetic
programming (GP) to mutate malware faces one critical
problem: deciding whether an evolved variant still retains the
characteristics of malware is a major issue of the evaluator.
Behavioral modification of existing malware via GP can neither
guarantee the maliciousness of the generated one, nor produce
malware with the desirable attack behaviors in a systematic
way.

A desirable malware benchmark for AMT auditing should
label each sample with the contained fine-grained attack fea-
tures. We refer to attack feature (AF) as a step or a component
(i.e., triggers, permissions or concrete behaviors) of a certain
attack, which links to the configuration or implementation of the
functional requirements (intention) of malware. For example,
phishing malware usually contains three AFs: a faked GUI that
tricks users to input the credentials, a source component to steal
the credentials, and a sink component to leak the credential.
Neither GENOME [6] nor DREBIN [7] explicitly labels the AFs
inside each malware sample, not to mention allowing security
analysts to derive new malware variants for auditing AMTs.

In our previous paper [11], Android malware generation is
treated as a software product line engineering (SPLE) problem
[12], considering new malware variants as product variants in
software product line (SPL). We separate each common attack
behavior into a basic reusable feature via domain analysis [13]
— to modularize the AFs of malware (§ III). In this way, we
develop a meta-model (i.e., feature model in SPL, see § II-A
and Fig. 2) of Android malware by modularizing AFs into
building blocks. With SPL for malware generation, having a
large set of valid and well-labeled malware is not challenging.

Our previous study shows that existing AMTs are susceptible



to new variants of old GENOME malware [11]. The AMTs can
detect 90% of GENOME malware on average. After we apply
multi-objective evolutionary algorithm (MOEA) to combine
different attack and evasion features that are modularized from
GENOME, the DR sharply drops to 20%-40% in 10 generations
of evolution. Finally, for malware variants after 100 generations,
existing AMTs only detect 10%-20% of them on average [11].

However, our tool MYSTIQUE used in previous study does
not produce the attack of dynamically loaded malware [11].
Considering the severity of this attack [14], we want to audit
whether the AMTs can detect the evolved malware that is
assembled and loaded dynamically. Hence, in this study, we
extend MYSTIQUE to be service-oriented and name it as
MYSTIQUE-S. It adopts dynamic software product line (DSPL)
techniques [15] and delivers the generated malware at runtime
from the remote server to the client for evading detection.

Technically, MYSTIQUE-S consists of three major steps.
First, its client app collects some hardware and software
information on device, which is achieved by a simple scanning
without root privilege. Then the information is sent to the server
side of MYSTIQUE-S (§ IV). Next, the server automatically
selects a set of AFs that satisfy the constraints on the user
device, and generates the malicious code on the fly (§ V).
For example, the details of the user scenario (e.g., the model
of device, OS version and installed AMTs) are analyzed
and converted to constraints. To guide the AF selection, we
propose three goals: aggressiveness, latency, and detectability
(§ V-B). Each AF has a score for latency and a score for
detectability. Linear programming (LP) is applied to find
the AFs that satisfy the constraints and optimize the three
goals. Lastly, the malicious code is delivered to the client
device via a web service, and executed via the reflection
mechanism (§ VI). We adopt the reflection mechanism offered
by DEXCLASSLOADER [14], which can load dex files and execute
the class files inside.

Different from the work in [16] which focuses on re-
quirements in malware ontology analysis, we maintain the
traceability between the AFs and their corresponding code.
To assemble the code of different features, we introduce the
behavior description language (BDL) (§ VI-A and VI-B) to
serve as the bridge between the high level AFs and the low
level implementation code. Owing to the BDL, we validate
and generate malicious code in a model-driven way. Compared
with previous studies on auditing AMTs using different evasion
or obfuscation techniques [2, 3, 8] or at certain time point [17],
our studies aim to investigate the impact of various AFs and
evasion features (e.g., dynamic loading technique) separately.

Beyond our previous work [11], we also make the following
novel contributions in this study:

• In previous study, only for the attack of privacy leakage, we
build the malware meta-model and generate the variants [11].
Now, we complement the meta-model with more attacks such
as financial charge, phishing and extortion. We modularize
the AFs of these attacks, and generate variants accordingly.

• MYSTIQUE-S adopts a service-oriented architecture to
collect the client-end data and deliver the malware at runtime.
Meanwhile, to support the model-driven malicious code

generation, we propose the BDL to glue the high level
features with their low level implementation code.
• Our work in [11] relies on MOEA, which is computationally

costly. In this work, we adopt linear programming (LP) to
select suitable AFs for optimizing the objectives of malware
inventor, since LP can rapidly solve the constraints of feature
model on the fly and avoid the evolution time of MOEA.
• Instead of using static detection or dynamic detection via

virtual machine in the report [11], we evaluate our tool on
16 real Android devices. We observe that in most cases, the
malicious code generated by MYSTIQUE-S are not detected.
According to our findings, we propose some enhancements
for the AMTs.

II. BACKGROUND

A. Dynamic Software Product Line

SPLE is a software development paradigm that has received
much attention in the last decade [13]. SPLE aims to reuse the
commonality among the products inside the same family, and
maintain the product variants in a systematic way. SPLE usually
adopts the feature-oriented domain analysis (FODA) to identify
the codebase and variant features [18]. The codebase refers
to the same code shared by all the product variants, which
is the implementation of the basic functionality of a software
family (a set of similar products) [12]. Variant features, which
are different extra functions, are used to satisfy the needs
of various customers. Typically, SPLE includes two stages:
domain engineering that builds the architecture consisting of
the codebase and variant features, and application engineering
that derives new products by applying variant features onto
the codebase. Generally, automation of product derivation is
the main advantage of SPLE.
Feature model (FM). The centric concept in SPLE is to extract
the feature model [18] — a tree-like feature hierarchy that
captures the structural and semantic relationships between
features inside. The core task in application engineering is to
choose a set of features to derive valid products that satisfy
all the constraints [12] and optimize the product performance.

Given a feature f and its sub-features {f ′1, ..., f ′n}, there exist
four types of tree-structure constraints (TCs) (see Fig. 2 for
example). We list them and show their logical formula [19]:
• f ′i is a mandatory sub-feature — f ′i ⇔ f ,
• f ′i is an optional sub-feature — f ′i ⇒ f ,
• {f ′1, ..., f ′n} is an or sub-feature group — f ′1∨ f ′2∨ ...∨ f ′n ⇔ f ,
• {f ′1, ..., f ′n} is an alternative sub-feature group — (f ′1 ∨ f ′2 ∨
... ∨ f ′n ⇔ f ) ∧

∧
16i<j6n

(¬(f ′i ∧ f ′j )).

Further, given two features f1 and f2, three types of cross-tree
constraints (CTCs) exist, i.e., requires, excludes and iff [19]:
• f1 requires f2 — f1 ⇒ f2,
• f1 excludes f2 — ¬(f1 ∧ f2),
• f1 iff f2 — f1 ⇔ f2.

In traditional SPLs, variant features are bound to different
products statically at compilation time (before the execution
of the system). In contrast, adaptive systems support feature
binding at runtime and are called dynamic SPLs (DSPLs) [15].
A recent progress in SPLE is the implementation of DSPL via
the rapidly emerging paradigm of service-orientation (SO). By

2



Fig. 1: Results of AMTs auditing by using MYSTIQUE [11]
virtue of the dynamic composition of service, variants features
can be loaded into the system dynamically according to user
preferences and environmental scenarios. In SPLE, a feature
model (e.g., that of Linux kernel) may contain thousands of
features. It is a non-trivial problem to select an optimal set of
features which satisfies the constraints (i.e., TCs and CTCs)
among features. Selecting an optimal feature set represents a
searching problem [20]. Such problem is normally addressed
in SPLE community using techniques such as MOEAs.

B. Android Attacks

We have witnessed the rapid development and evolution of
Android malware since the first Trojan malware was discovered
in 2010 [21, 22]. In this paper, we present four types of attacks
which are prevailing in the last two years. According to [23],
these four types of attacks constitute 60% of Android attacks.
Privacy leakage. Android malware may steal sensitive infor-
mation on Android devices, such as SMS messages, contact
information, geography locations and call logs [24]. The stolen
information can be used to track users, make profits, obtain
Mobile Transaction Authentication Number (mTAN) and so on.
Privacy leakage constitutes a large portion of Android malware
(about 78.7% in GENOME).
Financial charge. Premium Rate Services (PRS) are value-
added services provided by a telecom provider. PRS include
subscriptions to information, services of gaming, charity
donations and so on, which charge users beyond the standard
network charges. Android malware can stealthily text or call a
premium number, and cause extra fees [25].
Phishing. This attack uses social engineering techniques and
disguises malware to be a normal app, which tricks users into
exposing their credentials. Phishing is becoming progressively
severe, after it targets the financial apps [26]. SmiShing, a
kind of phishing attacks, spreads fake SMS to users and tricks
them into opening the crafted phishing web page and entering
their credentials. In addition, malware can also mimic GUIs of
target apps (e.g., banking apps and social apps). The credentials
entered by users in the fake app will be sent to the attacker.
Extortion. Since ransomware Simplocker was firstly discov-
ered in 2014 [27], plenty of variants have swarmed into mobile
devices. Extortion attack in ransomware basically contains two
steps — encrypting the files in the accessible storage via cipher;
deleting the original files. After receiving the ransom from the
user, the attacker may (or may not) release the encryption key
for the victims to decrypt the files.

It is observed that malware variants often share similar code,
especially for variants of the same attack. As reported by

Crussell et al. [28], software clones are common. Recently,
Chen et al. [29] detect malware based on the clone detection
techniques. Thus, code clone analysis helps to identify common
malicious code among variants [30]. In [11], relying on code
clone analysis on malware variants of privacy leakage [30],
we adopt FODA to modularize attack behaviors (and their
code) into AFs. In this work, we conduct the same analysis
for malware of the three other attacks.
C. Summary of Previous Study

In the previous study, we apply MOEA to mimic malware
evolution [11]. In particular, two genetic operators are applied
on the current generation to produce next malware generation:
gene crossover (i.e., exchanging (attack or evasion) features
of two samples) and mutations (i.e., mutating the selection of
features of malware). To retain evasiveness and aggressiveness
of malware in evolution, we define multiple evolution objectives
(a.k.a. fitness functions) for selecting malware variants to
survive into the next generation: 1) maximizing the number
of attack behaviors, 2) minimizing evasion techniques needed
and 3) minimizing the expected detection rate.

In Fig. 1, we summarize the results by two bars of each
of four types of AMTs. The first one is the DR for evolved
malware without evasion features; the second one “(E)” is
the DR for malware with evasion. “DA” denotes for dynamic
based AMTs; “SA” for static based AMTs; “ML” for machine
learning based AMTs; “AV” for the popular Anti-virus tools.
After malware evolves from 10-th to 100-th generation, the DR
of the audited AMTs sharply dropped. We attribute the low DR
for evolved malware to the modularity offered by MYSTIQUE.

In this study, we extend our work in [11] to support
more types of attacks and the dynamic loading technique
for advanced evasion [14]. To improve the efficiency, in
MYSTIQUE-S, we adopt LP (not MOEA) to select AFs for
malware generation.

III. FEATURE MODEL OF ANDROID MALWARE

To create new malware variants by reusing the attacks
in existing malware, we first analyze the malicious code
in malware benchmark GENOME [6] and recent malware
samples. Then, we represent AFs as a feature model (FM)
via FODA aided by the domain knowledge of security experts.
In general, we categorize the AFs into three types, namely
trigger, permission and behavior features in § III-A.

For the four types of Android attacks introduced in § II-B,
the corresponding FM is partially shown in Fig. 2 under the
behavior node. Currently, we identify and modularize 93 AFs
(§ III-A), and extract the CTCs among these features. For the
completeness of the classification, owing to the extendibility
of the FM, we can always add new AFs into the FM (e.g.,
privilege escalation [31]). Note that the FM is a conceptual
modeling of features, and we also keep the traceability between
a feature and its modularized code in our built SPL (§ III-C).

A. Attack Features

We identify different AFs according to the context, permis-
sion and functionality relevant to the attack, as shown below.
Trigger features refer to the configurations that customize the
entry points for malicious attack behaviors. Triggers can be
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Fig. 2: The partial feature model of Android malware

TABLE I: Parts of attack features in covered attacks

Source Category
TELEPHONY IMEI, IMSI, PHONE NUMBER, etc
SMS INBOX, INCOMING SMS, etc
CALL CALL LOG, INCOMING CALL, etc
BROWSER BROWSER HISTORY, etc
MEDIA RECORD AUDIO, etc
LOCATION REAL TIME LOCATION, etc
BUILD CODE NAME, SDK, etc
CONTACT CONTACT, etc
ACCOUNT ACCOUNT, etc
STORAGE EXTERNAL, etc
PACKAGE INSTALLED APK, etc

Sink Category
HTTP APACHE GET, SOCKET GET, etc
SMS SEND TEXT MESSAGE, etc

Premium service Category
SMS SEND TEXT MESSAGE, etc
CALL OUTGOING CALL, etc

Encryption Category
ENCRYPT ENCRYPT AES, ENCRYPT DES, etc

GUI-based or non GUI-based [32]. GUI-based triggers can
be easily identified by end users or AMTs, since it requires
interaction with visible GUI components [33]. In this paper, we
only consider non GUI-based triggers that have no interactions
with users. Four types of triggers are identified in GENOME:

• Trigger feature main means that the related behavior can be
triggered since the beginning of the life-cycle of an app;

• broadcast means that the behavior is triggered when a
broadcast message is received;

• listener means that the behavior is triggered when the
registered listener captures a change on the device states;

• observer refers to the observer that is registered on Con-
tentProvider. The observer triggers the behavior when the
content provider is changed.

Permission features refer to the permission required for the
malware to conduct malicious behaviors [34]. Android provides
a permission-based mechanism to avoid the abuse of system
sensitive operations. Many malicious behaviors in malware
require certain permissions to achieve attack goals. For ex-
ample, the permission android.permission.READ PHONE STATE is
required to obtain the IMEI code of the device via invoking the
method getDeviceId. In general, information leakage requires
the permission for accessing and sending out the information.
Similarly, phishing also requires such permissions. Financial
charge requires the permission for sending SMS to a number
that binds to premium rate services. The recent extortion attack
needs to access the public files on device with the permission
android.permission.WRITE EXTERNAL STORAGE.
Behavior features refer to the malicious behaviors conducted
by the attack, to which trigger and permission features are all
assistant [35]. Behavior features are the core AFs that mostly
link with the modularized malicious code. For the four types

of attacks shown in § II-B, there are four types of behavior
features, respectively. For each type of behavior features,
several steps need to be carried out for the success of the attack.
For each attack step, it may have several sub-features that
represent different implementations. For instance, in privacy
leakage, two steps are carried out: obtaining the privacy (i.e.,
feature source) and leaking the privacy (i.e., feature sink). For
feature source, there are multiple candidate sub-features (SMS
information, device information, etc.). Similarly, for feature
sink, the leaked privacy can be sent out by SMS or HttpRequest.

Note that the partial FM in Fig. 2 mainly illustrates the
high-level organization of these features. Each feature at the
bottom level in Fig. 2 may have several sub-features, e.g.,
feature Source has 11 variant sub-features in an Or relationship.
Each variant feature in Table I may have several sub-features of
different implementations (modularized code) in an Alternative
relationship. Interested readers can refer to our tool website [36]
for the complete FM, the full list of CTCs among the features.

B. Model Extraction

We design the feature model of Android malware based on
our manual analysis on the benchmark GENOME, and perform
a lightweight static analysis on malware to extract specific
features and associated implementation instances.

1) Model Architecture: Inspired by [6], we represent An-
droid malware with three necessary elements as discussed in
the previous section. From a high level of perspective, an attack
needs to satisfy certain external conditions first, and then be
waken up by triggers to execute specific malicious behaviors.
The types of triggers are concluded from many previous
works [6, 37, 38], and all of them are defined either in the
manifest file or in the implementation. For simplicity, we only
take into account permissions as configurable conditions that
guarantee the execution of malicious behaviors. The types of
malicious behaviors comply with the mainstream classification
of attacks in the mobile world [6, 23, 26].

2) Feature Extraction: As GENOME is well-known and
studied for the malicious code inside the malware, manual
analysis of GENOME malware is feasible and effective. Still,
some manual effort is needed to derive 16 common attack
features (93 variant features at the implementation level).
However, after we manually identify the malicious features of
some samples, owing to the aid of some tools, we can scale
this by the semi-automatic process1. We perform a lightweight
static analysis on Android malware to extract the concrete
implementations (variant features) for each common feature.
The three kinds of sub-features introduced in the previous
section are extracted as follows:
• permission features, which can be extracted directly from

the manifest file. Additionally, we remove out self-defined
permissions and focus on dangerous permissions2;

1In the tool website, details are provided on how attack features are
derived manually or semi-automatically. To see an example — how
attack features are grouped, variant features are introduced, and how
composability is handled — interested readers can refer to this link:
https://sites.google.com/site/malwareasaservice/home/featuremodel

2https://developer.android.com/guide/topics/security/permissions.html#normal-
dangerous
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• trigger features can be inferred either from the manifest file
or the implementation. For example, a broadcast receiver can
be defined as “〈receiver〉” in the manifest file, or dynamically
registered by registerReceiver in the code. Similarly, other
triggers can be extracted automatically from malware;

• behavior features, that are extracted from the code. Based
on [34] and acquired permissions in malware, we locate
the invocation of sensitive APIs, and subsequently identify
the usage patterns of these APIs as feature instances. Since
dynamic code loading has been already widely used in
malware, some invocations of sensitive APIs may bypass our
scanning. Therefore, we specifically investigate the reflection
employed in the code and interpret the real invocations.
Note that we modularize the common attack features that

explicitly own malicious code (in particular, malicious code in
Java), and the code of the covered attacks in this paper. For
malware GingerMaster that employs native code to gain the
root privilege, of which the attack is not considered in the
paper, we do not elicit malicious functionality from them.

The current FM is built according to the availability of an
attack and its possible implementation instances in GENOME.
For example, there are many implementation instances of
AF of privacy leakage. There are many sources of sensitive
information such as data that can be obtained by invoking
Android APIs, data that is stored in Content Provider, and data
that is sent by system broadcast of incoming SMS. Similarly,
there are many implementation instances for sink features and
ways to link the source and the sink. Therefore, we have
constructed most attacks of privacy leakage. The attack of
financial charge in GENOME basically sends a specific message
to a premium rate number. The primary difference is the
parameters of either the sent message or the premium rate
number, and hence the implementations are quite similar. Thus,
we only construct one sample to represent the attack of financial
charge. The situation is similar to the attack of phishing. For
the attack of extortion, it actually does not exist in GENOME.
Considering its emergency and increasing popularity, we
construct one sample for extortion. Since there are few samples
and variants for analysis nowadays, it is also parameterized
for more variants like financial charge. Nevertheless, owing
to the extendibility of the FM and Mystique-S, new variant
features for an attack (e.g., extortion) can be added when more
implementation instances of the attack are available.

C. Feature Modularization
The code of AFs is modularized into code units of various

granularity, ranging from several packages to a single method.
The phishing AF usually contains the largest number of lines
of code (LOC), as it has the faked GUI or functionalities to
deceive the users. Hence, the corresponding code of phishing
attack can be close to the genuine app, with the LOC up to a
reasonably large number. In contrast, the implementation of
financial charge (or adware) can be just several lines of code and
easily modularized into a method. For example, in Fig. 3, we
show the modularized code for sending the token by SMS (D1).
The token is intercepted by registering a BroadcastReceiver
and listening to the incoming SMS messages and then sent out
in an SMS message to a specific number via SmsManager.

1 public void onCreate(Context context, Intent intent){
2 if (intent.getAction().equals("android.provider.Telephony

.SMS_RECEIVED")){
3 final Bundle bundle = intent.getExtras();
4 if (bundle != null) {
5 final Object[] pdusObj = (Object[]) bundle.get("

pdus");
6 for (int i = 0; i < pdusObj.length; i++) {
7 SmsMessage currentMessage = SmsMessage.

createFromPdu((byte[]) pdusObj[i]);
8 sb.append(currentMessage.getDisplayMessageBody()

).append("&");}
9 }

10 }
11 SmsManager sm = SmsManager.getDefault();
12 sm.sendTextMessage(number, null, message, null, null);
13 }

Fig. 3: The modularized code of sending token via SMS (D1)

IV. RUNNING EXAMPLE AND SYSTEM OVERVIEW

A. A Motivating Example

Fig. 4 depicts an exemplar of malware service that dynami-
cally loads malicious code from a remote server3. The basic
idea is to disguise the client app as a benign app that tricks
users into entering credentials and then intercepts the SMS
with two-factor token. The basic steps are executed as follows:

1. After the client app is installed on user device, it starts a
daemon service to communicate with the service provider
of malware. It collects and sends the user information (e.g.,
hardware and software information of the device) to the
server, and receives the malicious payloads from the server.

2. After the malicious code is delivered to the client, the daemon
service starts a fake bank activity from the component
A inside (Step 1 in Fig. 4). In the life-cycle of the
phishing activity, two code snippets are instrumented into
the component B and C, respectively.

3. The code in B is to change the view of activity to mimic the
specific bank app, and the code in C is to get the entered
credentials and send them to the server (Step 2).

4. Last, the daemon service registers a broadcast receiver to
listen to incoming SMS messages (Step 3). The SMS
message that contains the two-factor token (the key for
two-factor authentication) is leaked to the attacker (Step 4).
As shown in Fig. 4, for the same attack step, there may exist

various implementations, which are also regarded as candidate
AFs. For example, for the phishing attack in Fig. 4, there
exist three AF candidates (i.e., different views) of phishing
attack (B1, B2, B3). For feature LeakCredential in component
C, there are two AF candidates: sending credentials by Apache
connection (C1) and sending them by SMS (C2). For the
feature LeakToken in component D, there are two candidates:
sending token via SMS (D1) and sending token via socket
(D2). For simplicity, in this example, we just show two or
three candidate AFs for each attack step, and also omit the
finer-grained AFs of the source and sink operations at step 2
and 3. Types and granularity of AFs are explained in § III.

For this example, three tree constraints (TCs) and five cross-
tree constraints (CTCs) need to be satisfied. For example, TC2

means if LeakCredential is selected, at least one of C1 and C2
must be selected, and vice versa. CTC3 means the selection of
LeakToken requires the selection of permission feature P3.

3The original version of the example malware is found in March
2016 [39], but it is neither service-oriented nor dynamically loaded.
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❹ Intecept SMS and send  
the token

❶ Start a fake bank activity

❸ Register a broadcast receiver

❷ Credentials are sent to server

view.addEditText(USERNAME)
view.addEditText(PASSWORD)
view.addButton(LOGIN)

name=getUserName()
pass=getPassword()
leakCredential(name, pass)

sms=extractSms(intent)
leakToken(sms)

(a) Daemon service (b) Phishing activity (c) Registered broadcastreceiver

A B

C D

B1B2B3 D1D2

C1C2

Feature set in server

B2

C1

D2

Fig. 4: A running example of MYSTIQUE-S

TC1 : B1∨ B2∨ B3⇔ Phish — or type
TC2 : C1∨C2⇔ LeakCredential — or type
TC3 : D1 ∨ D2⇔ LeakToken — or type
CTC1 : C1⇒ P1 (android.permission.INTERNET) — require type
CTC2 : C2⇒ P2 (android.permission.SEND SMS) — require type
CTC3 : LeakToken⇒ P3 (android.permission.RECEIVE SMS) — require type
CTC4 : D1⇒ P2 (android.permission.SEND SMS) — require type
CTC5 : D2⇒ P1 (android.permission.INTERNET) — require type

The suitable AFs need to be automatically selected for the
sake of a better success ratio of attack, given different user
scenarios (e.g., model of device, OS version and installed
AMTs). For example, if the device installs NORTON, AFs {B2,
C1, D2, P1, P3} should not be selected. The reason is that
NORTON reports suspicious apps based on the permission P2.
If no AMT is installed, AFs (B2, C2, D1, P2, P3) are selected
as P2 can be selected for short latency due to the immediate
action of sending SMS messages.
B. System Architecture

MYSTIQUE-S is a framework of automated malware genera-
tion, which takes as input the client-end contextual information
and outputs the user-tailored malicious code. Based on the An-
droid malware FM (§ III), MYSTIQUE-S automatically selects
AFs according to the user scenario via linear programming
(LP in § V-C). Then, the selected AFs guide the model-driven
generation of malicious code (§ VI). Last, the payloads are
delivered to the user device and loaded dynamically (§ VI).
Here, payloads refer to the generated malicious code and the
corresponding instructions (i.e., the command for the client
app to load the code of AFs in sequence).

Fig. 5 depicts the architecture of our tool, which contains
three parts as we discuss below:
• Client app. Its task is to (periodically) collect the contextual

information on the user device, receive malicious code and
instructions from the server, and launch the attack by using
the dynamic code loading mechanism (§ VI-C). As shown in
Fig. 5, three critical modules are included in the client app: 1)
daemon service interacts with the service provider and starts
an attack once receiving the malicious code and instructions.
2) dynamic instrumentation deploys the malicious code in
different components (e.g., Intent) of the client app, interprets
the received instructions and acts accordingly. 3) execution
of malicious behavior executes the instructions (loading the
malicious code of multiple AFs in sequence). Finally, the
execution results are fed back to the daemon service.

Communication Infrastructure based on JSON-WSP

Client App Service Provider

Execution
of M. B.

Dynamic
Instrumentation

Daemon
Service

Malic code

Exec. instruction

results

Code
Generation

LP-based Feature
Seclection

Request
Listener

requestscode & instructs

featuresinstructions

Instruction
Generation

Fig. 5: The overview of system

• Service provider. The service provider listens to the requests
from the client app on installed devices. After receiving the
user device information, it selects AFs and generates the
corresponding payloads. Four modules are involved in the
process: 1) request listener receives attack requests and
initializes the automatic generation of payloads. 2) LP-based
feature selection selects an optimal combination of AFs from
the Android malware FM. 3) instruction generation takes
input as the selected AFs and generates the instructions by
considering the context in the client app. One instruction, in
the format of BDL that specifies the workflow of malware
(§ VI-A), contains the execution context and the operation
to execute. 4) code generation generates the malicious code
by assembling the code of AFs according to the BDL. After
the process, request listener sends the generated payloads
to the daemon service on user device.
• Communication infrastructure. It provides a connection-

less protocol that enables the asynchronous communication
between the client app and the server. As an attack needs
multi-round interactions between the client app and the
server, the connection is not retained during the lifecycle of
an attack for the sake of hiding the attack. Instead, the service
provider will track the state where the attack proceeds. In
addition, the exchange message follows the standard JSON-
WSP [40] for a bidirectional communication (see § VI-C).

V. USER-TAILORED ATTACK FEATURE SELECTION

In this section, we explain how the user-tailored AFs are
automatically selected by linear programming (LP). First,
we show how to convert TCs and CTCs among features to
inequalities for LP based constraint solving (§ V-A). Then we
define the malware generation goals (§ V-B). Last, we resolve
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the AF selection problem via LP (§ V-C), i.e., satisfying the
inequalities and optimizing the objective functions.

A. Converting Features Constraints to Binary Inequalities

To select features and generate the products that satisfy the
TCs and CTCs (defined in § II-A) inside the FM, Broek [41]
adopted integer programming (IP) for the feature selection
problem (i.e., initialization of valid product in [41]). Broek
converted the TCs and CTCs into the integer inequalities, and
then apply IP to resolve these inequalities. In this paper, we
further convert the TCs and CTCs into the inequalities of binary
variables. Given a feature f , the binary value represented by the
selection of f (denoted as |f |) is 1 if selected, and otherwise |f |
is 0. According to the integer inequalities deduced in [41], we
can further deduce the corresponding binary inequalities for
the TCs and CTCs. In Table II, we list the binary inequalities
for different types of constraints. Due to the page limit, we
only provide the proof on our website [36].

B. Goals of Attack Feature Selection

Apart from the constraints to satisfy, we also need to define
the design goals for malware generation. We propose three
objectives to guide the AF selection: aggressiveness, latency,
and detectability. As the results of AF selection, malware is
getting more aggressive with shorter latency, but being less
detectable. Given a solution ~x, we represent it as a bit vector of
all AFs, where {f1...fn} denotes the set of n AFs. The objective
functions are defined as follows.
Obj1. Aggressiveness: to make the malware more aggressive,

we want to minimize the number of AFs that are not
selected. It is defined as: F1(~x) =

∑n
i=1(1− |fi|).

Obj2. Latency: to shorten the time-delay in attack launching
(e.g., leaking by SMS has less latency than leaking by
Internet), we aim to minimize the total latency of all
selected features. It is defined as: F2(~x) =

∑n
i=1(|fi|× li),

where li denotes the latency of AF fi.
Obj3. Detectability: to increase the chance for malware to

succeed, we minimize the probability to be detected by
AMTs. It is defined as: F3(~x) =

∑n
i=1(|fi|×di), where di

denotes the detection ratio of AF fi if fi is applied alone.
Intuitively, Obj1 and Obj2 are competing with Obj3, mean-

while Obj1 and Obj2 are mutually competing. For instance,
having more attacks or shorter latency will lead to earlier and
easier detection of the attack. Besides, having more AFs, which
is desired, can lead to an undesired side effect of higher latency.
With the feature constraints in § V-A that are linear, the three
objective functions are also linear. Hence, LP can be applied
to resolve this optimization problem. Note that li ∈ [0, 3] and
di ∈ [0, 10] are empirical values, according to our preliminary
studies. For example, latency l is set to 1 for C1, and 2 for
C2; detectability d is set to 3 for C1, and 4 for C2. More
discussions on the setup of values of li and di can be found in
§ VIII.

C. Attack Feature Selection via LP

For the richness of possible solutions, we would not encode
three objectives into one weighted objective for one time
solving. Instead, we treat each objective equally and solve

TABLE II: Binary inequalities for different types of constraints

Constraint Type Binary Inequality

f and its mandatory sub-feature f ′ |f ′| − |f | = 0

f and its optional sub-feature f ′ |f ′| − |f | 6 0

f and its or sub-features
∀ i ∈ {1, ..., n} |f ′i | − |f | 6 0∑n

i=1 |f
′
i | − |f | > 0

f and its alternative sub-features
∀ i ∈ {1, ..., n} |f ′i | − |f | 6 0∑n

i=1 |f
′
i | − |f | > 0∑n
i=1 |f

′
i | 6 1

f1 requires feature f2 |f1| − |f2| 6 0

f1 excludes feature f2 |f1|+ |f2| 6 1

f1 iff feature f2 |f1| − |f2| = 0

this Multi-objective Optimization Problem (MOP) using the
Pareto dominance relation [42]. In MOPs, usually there exists
no single solution that simultaneously optimizes all objectives.
Hence, we are interested to find the non-dominated solutions. A
solution is called non-dominated, if none of the objectives can
be improved in value without degrading other objectives [42].

A k-objective optimization problem could be written in the
following form (in our case, k = 3):

Minimize ~F = (F1(~x),F2(~x), ...,Fk(~x))
Subject to the inequalities on variables (|f1|...|fn| in our case),

where ~F is a k-dimensional objective vector, Fi(~x) is the value
of ~F for i-th objective, and ~x is the feature set {f1, ..., fn}.
Technical innovation. To resolve MOPs, MOEAs are often
applied [43, 44]. MOEAs are generally scalable, but it requires
some evolution time. As heuristic search techniques, MOEAs
cannot guarantee to find many non-dominated solutions. Tradi-
tionally, LP can only solve single-objective LP optimization.
Considering the manageable feature size of the FM (§ III), we
apply LP to resolve the MOPs in an analytic way.

The basic idea is that: we retain an objective as the goal
function for optimization, and convert two other objective
functions into constraints by setting the concrete bounds for
them. To find more non-dominated solutions, we need to
gradually adjust the bounds for these two objective functions.

Algorithm 1 depicts the main process of LP-based AF
selection. At lines 1-3, the user information (e.g., the model
of device, OS version and installed software) is analyzed via
function getInfor() and the searching bound for obj2 and obj3
are suggested. For the example in § IV-A, if the user device
installs many AMTs and the latest Android version, the malware
should have a low detection ratio (a small ratio of the theoretic
upper bound, e.g., 10%×

∑n
i=1 di), and can tolerate a little

high latency (a large ratio of the theoretic upper bound, e.g.,
50%×

∑n
i=1 li). At lines 4-9, we gradually adjust the upper

bounds of obj2 and obj3 and get the corresponding solutions.
At line 8, bintprog(allConsts, obj1) is the LP solving function
that optimizes obj1, subject to the constraints of inequalities in
allConsts. Finally, it reaches the termination condition (i.e., the
upper bounds) and gets the candidate solutions into solutions.

For the constraints of the example in § IV-A, according to
Table II, we can convert these logical formula to the inequalities
for LP solving function bintprog. For the termination case of our
example, lines 6-9 get the following inequalities and perform
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Algorithm 1: Linear programming guided feature selection
Input: featureMdl: the feature model of Android malware
Input: userInfor: the contextual information of user device
Output: solutions: a non-dominated solution set for feature

selection
Output: returnedSol: a solution returned to guide malware

generation
1 solutions ← ∅;
2 upper o2 = getInfor(userInfor), lower o2 = 0;
3 upper o3 = getInfor(userInfor), lower o3 = 0;
4 for i = lower o2; i 6 upper o2; i = i+1 do
5 for j = lower o3; j 6 upper o3; j = j+1 do
6 const o2 = convert(obj2, i), const o3 =

convert(obj3, j);
7 allConsts = TCs ∪ CTCs ∪ const o2 ∪ const o3;
8 nondominatedSol = bintprog(allConsts, obj1);
9 solutions = solutions ∪ nondominatedSol;

10 returnedSol = solutions.First();
11 for sol ∈ nondominatedSol do
12 if aggregatedObj(sol) < aggregatedObj(returnedSol) then
13 returnedSol = sol;

14 return returnedSol;

the LP solving. Note that |B1| returns 1, if B1 is selected; O2C
is the constraint converted from obj2, where

∑n
i=1 li refers to

the sum of latency of each feature; O3C is converted from
obj3, where

∑n
i=1 di refers to the sum of the chance of each

feature to be detected.

Minimize ~F = (F1(~x)), where ~x is the set of all features
Subject to: TC1 ∧ TC2 ∧ TC3 ∧ CTC1 ∧ ... ∧ CTC5 ∧ O2C ∧ O3C
TC1 : |B1|6Phish, |B2|6Phish, |B3|6Phish, |B1|+|B2|+|B3| > Phish
TC2 : |C1|6LeakCredential, |C2|6LeakCredential, |C1|+|C2|>LeakCredential
TC3 : |D1| 6 LeakToken, |D2| 6 LeakToken, |D1|+|D2| > LeakToken
CTC1 : |C1| 6 |P1| CTC2 : |C2| 6 |P2|
CTC3 : |LeakToken| 6 |P3| CTC4 : |D1| 6 |P2|
CTC5 : |D2| 6 |P1|
O2C : 0 6 F2(~x) 6 50%×

∑n
i=1 li

O3C : 0 6 F3(~x) 6 10%×
∑n

i=1 di

At lines 11-13, among the candidate solutions, we combine
several objectives into an aggregated one, by normalizing the
ranges of objectives and assigning them with different weights
via function aggregatedObj() at line 12. At lines 12-13, we
iterate all candidate solutions and identify the optimal solution
according to the weighting scheme. In addition, in practice, we
refine the returned optimal solution by applying some extra con-
straints, which are not from the FM, but from the observations
on AMTs and AFs. For example, if NORTON is installed on the
device, feature P2 android.permission.SEND SMS should not
be selected — NORTON reports the third-party app as suspicious
if it requires P2. In other scenarios, if no AMT is installed on
the device, AFs (B2, C2, D1, P2, P3) are selected as P2 can
be selected for the short latency of sending SMS immediately.

We clarify that to utilize the user contextual information, the
relaxed LP approach is proposed to run LP solving for multiple
times. With more candidate solutions, the variety of selected
AFs (and the generated code) is improved, preventing the
signature- or clone-based detection. Instead, directly combining
3 objectives into an aggregated one and solving it once
just yields one solution, which impairs the variety and the
unpredictability of the selected AFs.

VI. DYNAMIC GENERATION AND EXECUTION OF
MALICIOUS CODE

After the server conducts AFs selection via LP, we show how
to assemble the corresponding code of AFs via a model-driven
way (§ VI-A and § VI-B). Then, we explain how the generated
malicious code is sent to the client app via JSON-WSP. Last, it
is dynamically loaded and executed at the client end (§ VI-C).

A. Behavior Description Language

Semantics of the selected AFs is represented in a modeling
language, named Behavior Description Language (BDL). The
BDL representation for the AFs is more implementation
oriented. BDL is used for two purposes: on the server side, it
bridges the gap between the malware FM and the workable
implementations; on the client side, it assures that behaviors
of AFs are executed as designed.
Backus Naur Form of BDL. We present the partial BNF of
BDL in Fig. 6 (refer to [36] for the complete definition of BDL).
An attack can be divided into several subsequential operations,
i.e., 〈ATTACK〉 ::= 〈FUNCTION〉(′→′ 〈FUNCTION〉)∗. Hereby,
〈FUNCTION〉 is the basic step (building block) for an attack,
and it denotes the operation to execute as well as the
execution context. One function consists of three elements
— 〈COMPONENT〉, 〈POINTCUT〉 and 〈OPERATION〉, where
〈COMPONENT〉 denotes the component, the building blocks
of Android apps, 〈POINTCUT〉 denotes the methods where
malicious behaviors are located, and 〈OPERATION〉 denotes the
operation of malicious behaviors. The component and method
together identify the execution context for this operation.
Connection between feature and BDL. As the direct assem-
bly of code of the selected AFs may not yield a workable (no
compilation or runtime error) malicious code. Hence, BDL is
required to bridge the gap between the selected AFs and the
code implementation by adding the execution context of AFs
and auxiliary behavioral operations in implementation.

Conceptually, among the selected AFs, each behavior feature
relates to one 〈FUNCTION〉 in BDL. As behavior feature is
defined at the atomic behavior level (one step of the attack), its
corresponding code is usually modularized into the code unit
of method. The modularized code of feature conceptually links
to one 〈OPERATION〉. Hence, assembling modularized code
of features essentially requires to describe an 〈OPERATION〉
with the proper 〈COMPONENT〉 and 〈POINTCUT〉. For example,
one attack of privacy leakage is to steal users’ SMS messages.
According to the FM, it needs a 〈FUNCTION〉 to get SMS
messages (i.e., source), and a 〈FUNCTION〉 to send them out
(i.e., sink). These two steps comprise this attack. The code
method of source is an 〈OPERATION〉, and this method is
invoked in some 〈COMPONENT〉. The source operation also
needs a permission feature android.permission.READ SMS, and the
behavior need to be started in some 〈POINTCUT〉 — e.g., from
bootup of an app (i.e., trigger feature main) or from a change
event of a Content Provider (i.e., trigger feature observer).

Hence, BDL can provide details on: the component of activity
or service, the method where the malicious code is injected
and executed; the data flow from source to sink, using Android
lifecycle and Inter-Component Communication (ICC).
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〈ATTACK〉 ::= 〈FUNCTION〉(′→′ 〈FUNCTION〉)∗
〈FUNCTION〉 ::= 〈COMPONENT〉′ ::′ 〈POINTCUT〉′ ::′ 〈OPERATION〉
〈COMPONENT〉 ::= ′ ACTIVITY′ |′ SERVICE′ |′ BROADCAST RECEIVER′...
〈POINTCUT〉 ::= ′ POINTCUT ONCREATE′ |′ POINTCUT ONSTART′...
〈OPERATION〉 ::= 〈SOURCE SIG〉 | 〈ENCRYPT SIG〉 | 〈PHISH SIG〉...

Fig. 6: Parts of BNF for BDL

1 class Task{
2 /* Feature declarations */
3 // code of phishing feature B2
4 void phishing(){ ... }
5 // "Sink" of feature C1, send credentials by Apache conn.
6 String sendCredential(String data){... }
7 // "Source" code of feature D2, read incoming SMS.
8 String getIncomingSms(){ ... }
9 // "Sink" code of feature D2, send token by Socket conn.

10 String sendToken(String data){...}
11

12 /* The invocation to features */
13 Object operateOn(String comp, String met){
14 if (comp=="ACTIVITY"&&met=="ONCREATE") {
15 phishing();
16 }else if (comp=="BROADCAST_RECEIVER"&&met=="ONRECEIVE"){
17 sendCredential(getIncomingSms()) ;
18 }
19 ...}
20 }

Fig. 7: Generated code for the selected AFs (B2, C1 and D2)
B. Model Driven Malicious Code Generation

In MYSTIQUE-S, we have set some rules for automated gen-
eration of BDL for selected AFs, including various commonly-
used source-sink patterns [38], and information flows for
phishing attack. The service provider further interprets BDL to
generate the corresponding malicious code. As the malicious
code is dynamically loaded and executed in the client app,
MYSTIQUE-S will not bind or invoke the code snippets of AFs
at server side. Hence, the generated malicious code includes
two parts: the declaration of code for AFs (in the format of
Java method), and the invocation method to AFs.
An illustrative example. For the example in Fig. 4, it is a
composite attack with privacy leakage and phishing. As the
phishing feature can only be deployed in the main thread of an
activity, it is assigned to the context of ACTIVITY::ONCREATE.
The acquisition of incoming SMS messages needs to be done in
the context of a registered broadcast receiver. Thus, the selected
AFs (i.e., B2, C1, D2) in § IV-A have the corresponding BDL:

ACTIVITY::ONCREATE::PHISH()
→ACTIVITY::ONCREATE::SINK(HTTP :: APACHE POST, CREDENTIALS)
→BROADCAST RECEIVER::ONRECEIVE::SOURCE(SMS::INCOMING SMS)
→BROADCAST RECEIVE::ONRECEIVE::SINK(HTTP::SOCKET POST,

LOCAL VARIABLE)

Based on the above BDL, MYSTIQUE-S generates the
malicious code in Fig. 7. Lines 3-14 provide the declarations for
these features, and lines 15-22 present the invocation to these
declarations. In method “operateOn”, it defines the statements
(i.e., the invocations to specific feature declarations) as the
instruction of attack for different steps.

C. Dynamic Loading and Execution of Malicious Code

Malicious code is dynamically loaded and executed in the
client app. The process relies on two mechanisms as below.
Single-step loading via JSON-WSP. JavaScript Object Nota-
tion Web-Service Protocol (JSON-WSP) [40] is a web-service

1 DexClassLoader loader = new DexClassLoader("[DEX_FILE]", "[
CACHE_FILE]", "[LIB_PATH]", "[CLASS_LOADER]");

2 Class clz = loader.loadClass("Task");
3 Object obj = clz.newInstance();
4 Method mtd = clz.getDeclaredMethod("operateOn", "[COMP]", "[

POINTCUT]");
5 mtd.invoke();

Fig. 8: A simple example of using reflection mechanism

protocol that uses JSON for service description. We use JSON-
WSP to exchange messages between client app and the server.

Initially, the service provider generates a sequence of
instructions to execute an attack. The client app queries and
receives from the server an instruction each time, named
single-step loading. The main part of instructions contains
the type of instructions and the content of the instructions,
in the format of {”command”:””, ”value”:””}. There are two
types of instructions — download that indicates the address of
the payload to download, and execute that provides a serial of
operations in BDL. For the running example, the first instruction
received by single-step loading is a download instruction to
download the malicious code, the following execute instruction
is to execute the behaviors defined in the BDL. (§ VI-B).
Dynamic execution via reflection. MYSTIQUE-S employs
Java Reflection to dynamically execute the malicious code.
Similar with the idea of XPOSED [45], MYSTIQUE-S injects
a small code snippet (shown in Fig. 8) into each execution
context of Android app. The code then checks the payloads
whether there is a task to execute in this current context. As the
payloads (e.g., operateOn in Fig. 7) define the operations to do
in different contexts, the malicious behaviors are dynamically
loaded into a specific context. In Android, reflection is based
on the class DEXCLASSLOADER which can load dex files and
read the included class files. As shown in Fig. 8, the client app
needs to create an instance of DexClassLoader by specifying the
location of the dex file. The class loader is used to instantiate
the target class and thereby the target method.

VII. EVALUATION

MYSTIQUE-S is implemented in about 4,187 lines of
Java code (23.9% for the client app, 76.1% for the service
provider, and modularized AF code is not included). It adopts
CPLEX [46] for solving LP. Considering the dynamic attack,
experiments are conducted on dynamic Analysis Tools (DATs)
or real devices installed with AMTs; the service provider is
deployed on a workstation running on Ubuntu 14.04 with Intel
Xeon(R) CPU E5-2697 and 64G memory. We aim to answer
the following research questions.
RQ1. Are the modularized AFs valid? Is the dynamically

assembly malicious code workable at runtime?
RQ2. Can the mainstream AMTs and online vetting process

detect the malware dynamically generated by our tool?
RQ3. Is MYSTIQUE-S adaptive to the different attacks in real

cases and helpful for the recurrence of an attack?
Evaluation subjects. To evaluate the evasiveness of the
dynamic attack and audit the AMTs, we select several state-
of-the-art AMTs for detection in Table III and IV.
A. RQ1: Validity of Generated Malicious Code

In this section, we evaluate the validity of MYSTIQUE-S.
Specifically, we conduct experiments to show the validity
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TABLE III: The detection results of ODTs, where 3 means
“passed” and 7 means “detected”

Tool DS#A DS#B Tool DS#A DS#B
FLOWDROID 3 7 ICCTA 3 7
DROIDSAFE 3 7 NORTON 3 3

AVG 3 3 AVAST 3 3
BITDEFENDER 3 3 ESET 3 3

KASPERSKY 3 3

of malicious code that is generated from each AF. Further,
we evaluate the service-oriented communication mechanism
between the server and the client app.

Among the 93 AFs introduced in § III-A, we identify
44 behavior features. For each behavior feature, we select
its required permission features and trigger features, and
generate the BDL representation. MYSTIQUE-S generates the
corresponding malicious code according to the BDL. Then
we repackage the malicious code into a blank Android app to
wrap it as malware. Finally, we execute the malware on the
emulator to verify whether the carried malicious code can be
successfully executed. The results show that malicious code can
fulfill its malicious intent, e.g., leaking information, extortion.
In this experiment, we confirm that each behavior feature, as
single building block, is valid and workable on its own.

To confirm the validity of the generated malicious code,
a honeypot is set up to receive the report of a successful
attack (e.g., the stolen information is sent to the honeypot) in
the experiment. Our honeypot has successfully received the
response from emulators or experimental devices. It proves
that our generated malicious code works in practice, which
encourages us to conduct user studies on real devices (§ VII-B).

During the communication between the client app and the
service provider, multiple sequential instructions are exchanged
to complete an attack. The bidirectional communication is
asynchronous, which means that the client app may receive and
execute only one individual instruction each time. To guarantee
the client app has obtained all necessary malicious code and
instructions, MYSTIQUE-S employs periodical querying in
the client app and state retaining in the service provider. The
daemon service in the client app will periodically enquire
service provider to check: 1) it is alive; 2) what to do in the
next step. This mechanism avoids the tense work (e.g., high
network traffic and high memory usage rate) with launching an
attack, and thereby reduces the probability of being perceived
by users. After identifying the attack to launch with LP, the
service provider retains the state where the attack proceeds.
In our experiments, we set the time interval as 30 minutes
for periodical querying. Results show that this mechanism can
tolerate the loss of Internet connection, and restore the attack
state after the client app is reconnected to the Internet.

B. RQ2: Auditing the AMTs on Real Devices

We have evaluated the resistance of generated malicious
code to the detection in three aspects: offline detection tools,
dynamic analysis tools and AMTs installed on Android devices.

1) Resistance to Offline Detection Tools (ODTs): To evaluate
the evasiveness of the client app against ODTs, we choose
several state-of-the-art static analysis tools and AMTs from
VIRUSTOTAL. To evaluate the efficacy of this dynamic and
optimal selection of AFs, we conduct an experiment that uses

the client app with/without the payloads, respectively. As shown
in Table III, column DS#A shows the results of scanning the
client app without payloads; column DS#B shows results of
scanning the client app with payloads. Here, payloads are the
malicious code generated according to the 44 behavior features.

Based on our observations from Table III, it is concluded that
MYSTIQUE-S can effectively bypass the detection of ODTs.
Generally, static analysis collects the evidences in the apk file
for detection. However, MYSTIQUE-S only dynamically loads
malicious code in an attack, and it does not store any malicious
code in the apk file. Hence, it has a very low probability of
being detected by ODTs.

2) Resistance to Dynamic Analysis Tools (DATs): We deploy
three state-of-the-art DATs to evaluate the evasiveness of
MYSTIQUE-S. These three tools are listed below:
• DROIDBOX4 automatically intercepts and modifies API calls

made by a targeted app. It captures the behaviors of apps at
runtime, e.g., information leakage, cryptographic operations,
the invocations of Android APIs and etc.
• DROZER5 allows to search for security vulnerabilities in

apps and devices by assuming the role of an app and
interacting with the Dalvik VM.
• TAINTDROID [47] can track how apps use sensitive infor-

mation via taint analysis. It has hooked several transfer
channels, including memory, file system, and event dispatch.
We construct 22 attacks (requesting specific permissions) of

privacy leakage with regard to the types of sensitive information,
1 attack of premium service, 3 attacks of phishing, and 1
attack of extortion. DROIDBOX can successfully capture many
behavior logs of the client app, for example, the download of
malicious payload, the acquisition of contact and SMS, the
operation to send SMS messages (perhaps to a premium rate
number) and the cryptographic operation. However, it still
needs manual efforts to confirm whether these behaviors are
malicious or not. In comparison, DROZER can only identify the
started Android components and the acquired permissions of
the client app. Since TAINTDROID only targets privacy leakage
of apps, it only detects 10 attacks (45.5%) of privacy leakage
in our experiment, while it fails to detect other kinds of attacks.

Summary. Compared to static analysis, the DATs can
effectively detect attacks via dynamically loaded malicious
code. It is reasonable because dynamic analysis can capture the
runtime information, which can facilitate the understanding of
current app operations. However, it has two issues that impede
its practical use: low scalability that makes it costly to detect
a huge amount of apps, especially for the Android app stores;
high dependency that makes it impossible to deploy it on real
devices, as DATs usually rely on an in-depth instrumentation
or modifications to Android OS.

3) The DR of Anti-virus: Due to the aggressiveness of the
malware, we cannot conduct a large scale user study. We
manage to have 16 volunteers install the client app on their
devices. Before the experiments, they need to have at least one
AMT installed on their device. We also assure them that the
possible attack is just proof of concept (POC), e.g., leaking

4https://github.com/pjlantz/droidbox
5https://labs.mwrinfosecurity.com/tools/drozer/
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TABLE IV: The detection results of AMTs on real devices,
where column 3 means “passed” and 7 means “detected”

,
Phone Model OS SDK AMTs Inst. Runt. Succ.

Nexus S 3.0.1 11 McAfee 3 3 Y
Nexus 4 4.0.1 24 Bitdefender 3 3 Y
Nexus 5 5.0.1 21 360 Security 7 3 Y

Nexus 6P 6.0.1 23 360 Security 3 3 Y
Nexus 6P 6.0.1 23 Norton 7 3 Y

Samsung Note 3 5.0 21 Kaspersky 3 3 Y
Samsung Note 4 5.1.1 21 AVG 3 3 Y

Samsung Galaxy 4 4.4.2 19 Lookout 3 3 Y
Samsung Galaxy 5 4.4.2 19 CleanMaster 3 3 Y
Samsung Galaxy 6 5.0.2 21 AVG 3 3 Y

Huawei P8 5.0.1 21 AntiVirus 3 3 Y
Huawei Honor 7 5.0.2 21 Avast 7 3 Y

Nexus 6P 6.0.1 23 Avast 3 3 Y
Asus Zendfon Selfie 5.0.2 21 None 3 3 Y

Xiaomi MI 2 5.0.2 21 Avira 3 3 Y
Xiaomi Note 2 5.0 21 Baidu 3 3 N

IMEI, leaking number of contacts, leaking a file’s name and
size only, and deleting the copied one of a user file. We replace
the code of aggressive AFs (e.g., encryption) with that for POC.
The profiles of devices and the detection results are presented
in Table IV. Attack vectors for each device are selected by
LP-based AF selection module. Details can be found at [36].
Evasiveness of malware. Generally, MYSTIQUE-S can easily
bypass the scanning of most of AMTs shown in Table IV.
Column Inst. means the scanning results of AMTs just after
installation; column Runt. means whether AMTs give alerts
when the attack is in progress; column Succ. means whether
attacks succeed on the device.

As the attack is conducted by dynamically loading malicious
code from the remote server and executing it locally, most
AMTs fail to identify the maliciousness of client app after
installation. There are only three AMTs that report the installed
app as suspicious — 360 SECURITY, AVAST and NORTON.

Interestingly, in Table IV, the client app passes the scanning
of 360 SECURITY on Nexus 6P, while it is detected by 360
SECURITY on Nexus 5. The detection capability in latest
Android OS is even degraded in some cases. We speculate that
some AMTs such as 360 SECURITY requests root permission
to perform an in-depth scanning. So they even exploit n-day or
zero-day vulnerabilities for rooting the user device. However,
the latest Android OS (i.e., 6.0) fixes all known vulnerabilities
and increases the difficulty in rooting. In reality, this weakens
the detection capabilities of these AMTs. In addition, NORTON
reports our client app as suspicious. In further testing, we find
that NORTON also reports many commonly used apps (which
are normally regarded as benign) as suspicious, e.g., Facebook,
GrabTaxi and Line. The reason is that NORTON employs a
strict detection mechanism that gives many false positives. Note
for the three alerted cases by AMTs, the attacks still succeed.

No matter whether AMTs give alerts after installation or at
runtime, we confirm the attack results by checking whether
the honeypot (§ VII-A) receives the attack response. We find
the attack succeed on 15 out of 16 devices, while fails on
Xiaomi Note 2. Further inspection shows this Xiaomi phone
has compatibility problem with the client app that causes the
failure of attacks.
Transparency of malware. We collect the feedback of user
experiences from the 16 volunteers. They cannot notice the
malicious behaviors of the client app, without any obvious

symptom (e.g., high network traffic and high CPU consumption)
observed. Hence, MYSTIQUE-S can silently conduct the
malicious behaviors specified by the remote server while
causing no attention of users. We attribute this to the adoption
of LP-based AF selection for different user scenarios, which
optimizes between the number of selected AFs, the chance to
be detected, and the latency (overheads) of the attack.

C. RQ3: Generating Recent Attacks in Real Cases

To show the adaptivity of our tool, we combine the AFs to
constitute the recent popular real-world attacks on Android.

1) Hacking Online Banking: Recently, numerous customers
of Australia’s largest banks are the victims of a sophisticated
Android attack that steals banking details and thwarts two-
factor authentication security. Our running example originates
from this attack. Customers of mobile banking apps are at risk
from the malware, which hides on infected devices waiting
until users open legitimate banking apps. The malware then
superimposes a fake login GUI over the top for intercepting
usernames and passwords. The malware can mimic up to 20
mobile banking apps from Australia, New Zealand and Turkey,
as well as login GUIs for PayPal, eBay, WhatsApp and etc.
Attack prerequisites. The following conditions need to be
satisfied before attacking: p1, the specified malware is installed
and started on victims’ devices; p2, the malware is granted with
sufficient permissions, including android.permission.INTERNET
and android.permission.RECEIVE SMS; p3, the banking app
employs the mechanism of two-factor authentication which
needs to send verification code to the register phone. The
client app of MYSTIQUE-S can ride on some benign apps
using “repackaging” [48]. In § VII-B, we show that the client
app can easily evade the detection by AMTs, which guarantees
p1. To satisfy p2, the client app asks for the necessary
permissions (defined in the manifest file), which can be granted
at installation (before Android 6.0) or at runtime (since Android
6.0). To satisfy p3, we mimic the login GUIs of the banking
apps, such as CitiBank.
Attack vector. According to user’s installed mobile banking
apps (e.g., CitiBank), the user-tailored AFs (including the
phishing feature for CitiBank login GUI) are selected. The
service provider then generates the malicious payloads that
consist of malicious code and commands to execute. The
malicious code can be referred to Fig. 7, and the commands
in BDL can be referred to § VI-B.
Damage of attack. We have distributed this attack to 5 Android
phones, from Android 4.0 to Android 6.0, and successfully
collected the credentials and two-factor authentication. We
discuss the possible damage from two aspects: the value of
attack target and the user awareness of the attack. Once the
bank account has been hacked, the attacker can obtain direct
benefits from the victim which can cause a huge damage to the
victims. From the perspective of users, there is no perceivable
difference between the benign and phishing app, as Android
activity as well as the views on it provide almost no hints for
manual authentication. Unlike the phishing website that uses
the fake URLs, careful users can spot some hints to authenticate.
Therefore, it easily escapes from the awareness of victims.
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2) Extortion app — Simplocker: Since the extortion malware
Simplocker was found in 2014, ransomware has been swarming
into the mobile app stores [49]. After launch, Simplocker starts
to encrypt files in a background thread. The encrypted files can
be any format, and the encryption is by AES cipher. However,
the encryption key is hard-coded in the binary file, which can
be used to decrypt the files. It is believed that Simplocker is
just a proof-of-concept or an early development version of
more severe and complicated variants of ransomware.

Attack prerequisites. The attack needs to meet such prerequi-
sites: p1, the malware is installed and started on user devices;
p2, the malware is granted with sufficient permissions, e.g., the
permission (android.permission.WRITE EXTERNAL STORAGE) to
access to the storage. The same to the first case, MYSTIQUE-
S satisfies p1 and p2.

Attack vector. After installed, MYSTIQUE-S collects the
information of the user device. If many important files are found
on the device (e.g., many new taken photos or created user files),
the user-tailored AFs (e.g., encryption, deletion) are selected.
As the BDL below, four AFs are selected for this attack, and
there are three constraints for these four features. Normally, the
permission android.permission.INTERNET is acquired by default,
which ensures the downloading of malicious payload. The
features are deployed into the main thread of the daemon
service, which can be represented as INTENT SERVICE::MAIN.

Features:
encryption, deletion, android.permission.WRITE EXTERNAL STORAGE
android.permission.INTERNET (for downloading payload)
Constraints:
encryption ∧ deletion⇔ extortion
encryption⇒ android.permission.WRITE EXTERNAL STORAGE
deletion⇒ android.permission.WRITE EXTERNAL STORAGE
BDL:
INTENT SERVICE :: MAIN :: ENCRYPT(CIPHER, FOLDER)
→INTENT SERVICE :: MAIN :: DELETE(FOLDER)

Execution of the payloads generated from the BDL above
performs the encryption on a certain folder, and deletes it.

Damage of attack. This attack is distributed via MYSTIQUE-
S, which is started by the client app. In this experiment, we
use the AES to encrypt the specify folder and then delete the
original files. The extortion attack can severely damage users’
information properties. The target files, which are encrypted
with a unknown cipher, may be very important to the victims.
In addition, the extortion attack can optionally have the AF
sink, if the user device has 4G connection. This operation can
further cause the leak of users’ privacy.

Spamming: INTENT SERVICE :: MAIN :: SINK(SMS, LOCAL VARIABLE)
(→INTENT SERVICE :: MAIN :: SINK(SMS, LOCAL VARIABLE))∗
Privacy: INTENT SERVICE :: MAIN :: SOURCE(CONTACT :: CONTACT)
→INTENT SERVICE :: MAIN :: SINK(HTTP, LOCAL VARIABLE)
Privilege escalation: INTENT SERVICE :: MAIN :: RUN(SHELL)

3) Miscellaneousness: MYSTIQUE-S can easily configure
and generate a variety of attacks. For example, spamming is
the kind of attacks which is annoying and exhaustive in recent
years [50]. This attack can be easily achieved by frequently
conducting sink operation. Hence, the SMS spamming can be
represented with the BDL as above. MYSTIQUE-S can easily
deploy the attack of privacy leakage using various source-sink
patterns, which involve 11 types of sensitive information such
as contact and SMS (Full details of sensitive information can be

referred to [36]). As the above BDL, the client app can obtain
the contact information on the current device. In addition,
MYSTIQUE-S can be further used to launch the attack of
privilege escalation which needs shell code to root the device.

VIII. DISCUSSION

A. Threats to validity

The internal threats to validity of evaluation stem from three
aspects. First, regarding the completeness of attacks considered
in this study, we just focus on the four types of attacks (§ II-B)
at this stage. In future, we will consider attacks such as privilege
escalation that roots the device via vulnerability exploitation.
Supporting privilege escalation will make MYSTIQUE-S similar
to METASPLOIT on Android. Second, for the three goals of
malware generation (§ V-B), aggressiveness and detectability
are security related, but latency is more on quality of service
(QoS). In future, we will consider other security or QoS related
goals, e.g., to minimize the communication times and data size
to exchange between the server and the client app. Last, for
the values of di and li of a feature (§ V-B), we now manually
define these values according to our understanding of these
attacks and results reported by the study [11]. Accord to our
preliminary study on different values of di and li, we find the
impact of values (di and li) for AFs is minor to the results of
feature selection, compared with the constraints among AFs.
As the variant features to be selected for one common AF is
usually less than 5, the optimal set of AFs to be returned is
often similar to an near-optimal set. A further empirical study
is required for better setup of di and li for different attacks.

The external threats are mainly two-fold. First, the malware
samples for FODA are mostly from GENOME and DREBIN.
Both of them contain many out-of-date malware, due to the
everlasting malware evolution and creation. To ensure the
timeliness of the FM of malware, we have considered some
recent samples of attacks of information leakage and extortion
(§ VII-C). Another threat is about the availability of real devices
and AMTs. More real devices need to be tested with more
various AMTs.

B. To be or not be obfuscated?

In this study, we do not further adopt the possible obfuscation
techniques for the client app or the generated malicious
code. Owing to the low detectability that we observed in the
experiments (§ VII), it is not necessary to use extra obfuscation
techniques for evading AMT detection. We also observe that
existing AMTs do not sufficiently check the data that is received
by a client app from the remote server at runtime. The rationale
is that performing such check would impose a heavy burden on
the performance. Besides, applying no obfuscation techniques
eases the manual check of the generated malicious code for
the experts. In reality, bytecode obfuscation techniques [2, 3]
or wrapping payloads into native dynamic-link library (DLL)
are applied for malware.

C. Possible enhancements for existing AMTs

To detect malware generated by MYSTIQUE-S, we propose
three different solutions, which are discussed as follows:
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1) Detecting C&C Communications Between the Client App
and the Service Provider: Actually, the first solution is usually
used for botnet or intrusion detection, but not a standard feature
of AMTs. We find that AMTs normally cannot afford to check
the data exchange of each app on Android. Firewalls often
adopt the network traffic or DNS analysis [51, 52] to detect
the C&C communication. Considering our tool as a testing
framework rather than a real attack tool, we do not encode
the C&C communication or use proxy strategies to prevent the
tracing of the service provider. So detecting and hiding C&C
communication is a topic different from this paper.

2) Detecting Dynamic Code Loading by Hybrid Analysis:
Hybrid Analysis (i.e., integrating static and dynamic analysis)
can help identify our malware. The first step is to conduct
static analysis on Android apps to find those that employ
dynamic loading techniques (e.g., by checking the existence
of DEXCLASSLOADER). Nevertheless, using dynamic loading
techniques does not imply that the app is malicious, as many
benign apps employ dynamic loading for unnoticed update [14,
53, 54]. Then, we need to build a white list for trusted apps and
server IP domains that are relevant to dynamic code loading.
Last, for the app on the white list, we still need to have dynamic
analysis in order to verify the benignity of the downloaded
code or file at runtime. The study [14] refers to the work on
downloaded file check at runtime on android.

3) Detecting Attacks by Realtime Monitoring and Security
Verification: The above two solutions are to check the com-
munication manners and dynamic code loading mechanism,
which may not sufficiently prove the maliciousness of an app.
Thus, the last solution is to have runtime anomaly detection.
We have witnessed the effectiveness of realtime monitoring
in [11] to detect the malware of privacy leakage. However, it
encounters many issues when it deals with dynamically loaded
malware. Most of realtime monitoring is based on information
flow analysis, and therefore, the incompleteness of sensitive
information to be monitored can cause insufficient detection.
Moreover, information flow based detection mainly targets mal-
ware of privacy leakage, while missing malware of other attacks
(e.g., ransomware). We propose to have some sandbox [55] or
instrumentation mechanism (e.g., ARTIST [56]) to monitor the
behaviors of an app with dynamically loaded code: checking
entities it accesses, alerting users about suspicious changes
to apps or system files, etc. Besides, information obtained at
runtime should be verified against the system security properties
and requirements [57], e.g., 1). no app should request the GPS
location, and later send it out via the Internet (possibly to
transmit the stolen location information); 2). no two apps
should be able to have collusion attack (app a requests the
GPS location, app b gets the information by IPC with a, and
app b sends it out via the Internet).

IX. RELATED WORK

AMT auditing. ANDROTOTAL [58] is an integrated framework
to automatically test the detection capabilities of anti-virus tools.
Christodorescu and Jha [59] leverage four types of obfuscation
techniques to test the capabilities of commercial anti-virus
tools. ADAM [8] employs several transformation techniques

to generate polymorphic malware, and test 10 prestigious anti-
virus tools. DROIDCHAMELEON [2, 3] collects three types
of transformation attacks in Android, and the authors have
used these attacks to audit the AMTs. Huang et al. [17] assess
the detection capabilities of 30 top anti-virus tools from two
aspects: malware scanning and engine updating. The study [60]
also reports that existing AMTs are suspectable to dynamically
loaded malware, using the existing malware.

Among the above studies, studies [58, 60] aim to provide the
platform to automate the process of AMT auditing. Currently,
for offline detection of AMTs, we run some scripts to audit
the AMTs via the service of VIRUSTOTAL. For the runtime
detection in § VII-B, the users manually check AMTs’ report
about the running apps. ADAM [8], DROIDCHAMELEON [2, 3]
utilize the evasion techniques (e.g., obfuscation, repacking,
transformation attacks) to generate malware variants for AMT
auditing. Apparently, evasion techniques generate no new
valid malware, but variants with the same malicious intent.
In contrast, our study facilitates creating new malware via com-
binations of various modularized AFs and evasion techniques.

Regarding to the advance of runtime based AMT evasion
attacks, Huang et al. identify the Android stroke vulnerability
(ASV) of system service [61] and the weakness of AMTs at
time points of scanning and engine update [17]. In this study, as
using new system vulnerability (e.g., ASV) or AMT weakness
certainly fails the AMTs, we just modularize and then combine
the AFs of existing GENOME malware for generating new
malware. In this manner, we audit AMTs. Note that MYSTIQUE-
S can easily add new AFs that are modularized from the
malicious code of vulnerability exploits (e.g., that of ASV).
However, such AFs might be too advanced for the purpose of
AMT auditing, but useful for the recurrence of an attack.
Automated malware creation. According to the report by
Zhou et al. [6], 86% of the 1260 samples are repackaged
versions of benign apps with malicious payloads. Hence,
repacking benign apps with malicious payloads is a cheap
and fast way of malware creation. Based on the extra modules
introduced by malicious payloads, the approach of module
decoupling can effectively detect repackaged malware [48].
Recently, genetic programming has been applied to create
malware in an automated way and evade the detection [9, 10].
Cani et. al. [10] employ µGP to automatically create new
malware that is undetectable for AMTs, and inject malicious
code into a benign app to construct a Trojan horse. Aydogan
and Sen [9] also adopt genetic programming to create Android
malware. Different from the mutation operations on instructions
of executables [10], Aydogan et al. mutate the CFGs (control
flow graphs) that are extracted from smali code of GENOME
malware [6]. Their experiments show that the new generated
malware can easily bypass the detection of AMTs. As shown
in the study [10], mutating malware faces one critical problem:
deciding whether a mutant still retains the characteristics of
malware is a major issue of the evaluator. Compared with
these mutation-based approaches, our approach evolves existing
malware via combinations of the modularized AFs, which easily
guarantee the maliciousness of new malware.
Evasive malware generation. Our work is also related to the
generation of evasive or dynamically loaded Android malware.
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To evade the detection of AMTs [2, 3], DROIDCHAMELEON
integrates three types of transformation techniques and gener-
ates obfuscated Android malware. Some evasion techniques
used in DROIDCHAMELEON [2, 3] are identified as evasion
features by Meng et al. in [11]. Hence, for the malware that
contains malicious payloads at compile time before execution,
the obfuscation [62] or evasion techniques (i.e., [2, 3]) are very
useful in failing the detection of AMTs.

Maier et al. [63] propose SAND-FINGER to construct the
divide-and-conquer attack, which fingerprints the character-
istics of popular sandboxes and decides to (or not to) load
malicious code at runtime. SAND-FINGER’s basic idea is to
load the malicious code at runtime when the sandbox is not
detected by scanning the fingerprinted characteristics. Unlike
our approach, SAND-FINGER does not modularize AFs. Instead,
it divides a malware sample into benign and malicious part.
Essentially, to prevent from detection, Maier et al. propose the
evasion features of sandbox fingerprints. It is interesting to
make MYSTIQUE-S adopt these features, and check how these
features can help evade the detection mechanism proposed in
§ VIII-C. In addition, Petsas et al. [64] propose three heuristics
(static heuristics, dynamic heuristics and hypervisor heuristics)
to fail dynamic analysis of Android malware. According to
results of checking heuristics rules, the attack decides whether
to launch the malicious payloads at run-time. In contrast, our
malicious payloads are delivered from the remote server at
runtime and can be purged after execution.

Dynamic code loading, as a code updating technique on its
own, is not harmful. Previous study [14] reports that 9.25% of
1632 popular apps dynamically load external code. According
to Aysan et al. [54], 19.60% of 25,000 apps from three
markets datasets make use this technique for updating purpose.
According to the recent empirical study by Maier et al. [65],
among 14,885 malicious and 22,032 benign apps, 36.4% of
malicious samples and 13.1% of benign apps use dynamic code
loading. Hence, dynamic code loading is becoming an important
evasion feature for Android malware. Based on the findings
in [65] and our observations in this paper, the protection from
attacks with this technique is still unsatisfactory for existing
AMTs. Last, our study is different from the empirical study
[65] as below. Maier et al. focus on dynamic code (and script)
loading, and investigate how it relates to malware [65] and how
it can be addressed. Our study focus on combining dynamic
code loading with different modularized AFs, and investigate
the capability of existing AMTs.

X. CONCLUSION

In this paper, we propose to adopt the SPLE in order to
modularize the common attack behaviors and construct the
corresponding conceptual model (i.e., the FM) for android
malware. To provide a benchmark for dynamically loaded
malicious code, MYSTIQUE-S adopts the DSPL techniques
and makes the attack as a service, which facilitates the
integration with other tools for AMT audit and penetration
testing. We also evaluate the effectiveness of MYSTIQUE-S and
the evasiveness of the generated malicious code on 16 real
devices with 4 different recent attacks. In future, we will
investigate the effectiveness of other attack and evasion features,

such as obfuscating the generated malicious code. In addition,
MYSTIQUE-S enables many studies on the malware generation
and AMT auditing. Lastly, we will investigate the detection
strategies for the malware generated by our tool on the fly.
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