
Optimizing Selection of Competing Features via
Feedback-Directed Evolutionary Algorithms

Tian Huat Tan† Yinxing Xue* Manman Chen* Jun Sun† Yang Liu‡ Jin Song Dong*

†Singapore University of Technology and Design, Singapore
*National University of Singapore, Singapore
‡Nanyang Technological University, Singapore

ABSTRACT
Software that support various groups of customers usually re-
quire complicated configurations to attain different function-
alities. To model the configuration options, feature model
is proposed to capture the commonalities and competing
variabilities of the product variants in software family or
Software Product Line (SPL). A key challenge for deriving
a new product is to find a set of features that do not have
inconsistencies or conflicts, yet optimize multiple objectives
(e.g., minimizing cost and maximizing number of features),
which are often competing with each other. Existing works
have attempted to make use of evolutionary algorithms (EAs)
to address this problem. In this work, we incorporated a
novel feedback-directed mechanism into existing EAs. Our
empirical results have shown that our method has improved
noticeably over all unguided version of EAs on the optimal
feature selection. In particular, for case studies in SPLOT
and LVAT repositories, the feedback-directed Indicator-Based
EA (IBEA) has increased the number of correct solutions
found by 72.33% and 75%, compared to unguided IBEA. In
addition, by leveraging a pre-computed solution, we have
found 34 sound solutions for Linux X86, which contains 6888
features, in less than 40 seconds.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Performance, Algorithm

Keywords
Software product line, evolutionary algorithms, SAT solvers

1. INTRODUCTION
To reduce development costs, shorten development cycles,

and improve flexibility and reusability, industries usually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

need to develop and maintain a set of similar products in
a systematic and reuse-based way [18]. In software family
or Software Product Line (SPL) [19], feature model is pro-
posed to model commonalities and competing variabilities
among similar yet different products. Based on the feature
model, different features are carefully selected to meet the
requirements of customers and to avoid possible conflicts or
compatibility problems. In the era of a thriving market of
mobile and serviced-based applications, vendors are required
to continually reconfigure their applications promptly, to
retain and extend their customer base. Therefore, it is de-
sirable to automatically derive features that could meet the
requirements of customers, and avoid all possible conflicts of
features.

Feature model provides a representation of software prod-
uct lines (SPLs), that could be used to facilitate the reasoning
and configuration of SPLs [19]. Common SPLs consist of
hundreds or even thousands of features. For instance, as
reported in [30], the Linux X86 kernel contains 6888 features,
and 343944 constraints. In addition, the features are usually
associated with quality attributes such as cost and reliability.
This complexity provides challenges for the reasoning and
configuration of feature models. It is hard for the vendor to
select a set of features that complies with the feature model,
and meanwhile optimizes the quality attributes according to
user preferences. This is called the optimal feature selection
problem [14].

Existing works [14, 29, 27, 28] have adopted evolutionary
algorithms (EAs) for feature selection with resource con-
straints and product generation based on the value of user
preferences, respectively. Guo et al. [14] proposed a genetic
algorithm (GA) approach for tackling the optimal feature
selection problem. In their work, a repair operator is used to
fix each candidate solution, so that it is fully compatible with
the feature model after each round of crossover and mutation
operations. This approach might be non-terminating, and
furthermore, it does not take advantage of the automatic
correction that brought by the GA. In addition, GA combines
all objectives into a single fitness function with respective
weights. This only gives users a solution that is specific to
the weights used in the objective formula.

To address this problem, Sayyad et al. [29, 27] proposed an
approach that uses EAs to support multi-objective optimiza-
tion, and a range of optimal solutions (i.e., a Pareto front) is
returned to the user as a result. They investigated seven EAs
and discovered that the Indicator-Based Evolutionary Algo-
rithm (IBEA) [36] yields the best results among the seven
tested EAs in terms of time, correctness and satisfaction to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA
c© 2015 ACM. 978-1-4503-3620-8/15/07...$15.00

http://dx.doi.org/10.1145/2771783.2771808

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

246

user preferences. In [28], they made use of static method
to prune features before execution of IBEA for reducing
search space. They also introduced a “seeding method” by
pre-computing a correct solution, which was subsequently
used by IBEA to generate further correct solutions.

Our work complements existing works by introducing a
novel feedback-directed mechanism to existing EAs. In our
approach, the feature model is first preprocessed based on
SAT solving to remove the prunable features, before the exe-
cution of an EA. We have shown that we always prune more
features compared to the pruning method in [28]. During
each round of executing EA, the violated constraints would
be analyzed. The analyzed results are used as feedback to
guide evolutionary operators (i.e., crossover and mutation)
for producing offsprings for the next round. Our evaluation
has shown that our method produces more promising off-
springs (that have fewer violated constraints), which has led
to faster convergence and resulted in more valid solutions in
a significantly shorter amount of time.

We make use of both SPLOT [22] and LVAT [1] reposito-
ries to evaluate our work. SPLOT is a repository of feature
models used by many researchers as a benchmark, and LVAT
contains the real-world feature models which have large fea-
ture sizes, including the aforementioned Linux X86 kernel
model which contains 6888 features.

Our main contributions are summarized below.

1. We introduce a feedback-directed mechanism into ex-
isting EAs. In a feedback-directed EA, solutions are
analyzed by their violated constraints. The informa-
tion is used as feedback for evolutionary operators to
produce offsprings that are more likely to satisfy more
constraints.

2. We evaluate benefits brought by the feedback-directed
EAs using feature models that are available publicly.
The feedback-directed EAs have shown a significant
improvement on finding more optimized valid solutions,
compared with the original unguided EAs used in [29,
28].

3. We make use of the seeding method as proposed in [28]
for finding valid solutions in the Linux X86 feature
model, which contains 6888 features. Our approach
combining with the seeding method has shortened the
search time for more than 200 times than the original
seeding approach as proposed in [28].

Outline. Section 2 introduces the background of this
work. Section 3 presents our feedback-directed EA. Section 4
provides the evaluation of our approach. Section 5 reviews
related works. Finally, Section 6 concludes and outlines
future work.

2. BACKGROUND
In this section, we provide the background knowledge

on software product line, feature model, and multi-objective
optimization problem.

2.1 Software Product Line
Software product line engineering (SPLE) is architecture-

centric and feature-oriented, as SPLE adopts feature-oriented
domain analysis [19] for requirements analysis and builds
core assets architecture for reuse [8]. Technically, SPLE is

a two-phase approach composed of domain engineering and
application engineering. The task of domain engineering is to
build the software product line (SPL) architecture consisting
of a core-asset base and the variant features, while the ap-
plication engineering focuses on derivation of new products
by different customizations of variant features applied onto
the core-asset base. Thus, automation of processing and
verification of product derivation is a fundamental problem
in SPLE. Exploring an efficient and scalable approach for the
optimal feature selection problem is critical to the success of
SPLE.

2.2 Feature Model and its Semantics
The concept of feature model in domain engineering is to

represent the features within the product family as well as the
structural and semantic (require or exclude) relationships
between those features [19]. Since the proposal of SPL,
feature model has even been characterized as “the greatest
contribution of domain engineering to software engineering”
[9].

A feature model is a tree-like hierarchy of features. The
structural and semantic relationships between a parent (or
compound) feature and its child features (or subfeatures) can
be specified as:

• Alternative – If the parent feature is selected, exactly
one among the exclusive subfeatures should be selected,

• Or – If the parent feature is selected, at least one of
the subfeatures must be selected,

• Mandatory – A mandatory feature must be selected if
its parent is selected,

• Optional – An optional feature is optional to be se-
lected.

Besides the above structure or parental relationships be-
tween features, cross-tree constraints (CTCs) are also often
adopted to represent the mutual relationship for features
across the feature model. There are three types of common
CTCs:

• fa requires fb – The inclusion of feature fa implies the
inclusion of feature fb in the same product.

• fa excludes fb – The inclusion of feature fa implies the
exclusion of feature fb in the same product, and vice
versa.

• fa iff fb – The inclusion of feature fa implies the
inclusion of feature fb in the same product, and vice
versa.

In Figure 1, the feature model of a Java Chat System
(JCS) is illustrated. The root feature of the feature model
is Chat, which has a mandatory subfeature (Output) and
several optional subfeatures (e.g., Encryption). Since the
feature Output is mandatory, exactly one of its subfeatures
(GUI, CMD, and GUI2) must be selected. In addition, if the
Encryption feature is selected, at least one of its subfeatures
(Caesar and Reverse) needs to be selected. There is a CTC
for JCS which is of the form fa iff fb – Encryption OR is
selected if and only if Caesar or Reverse is selected.

The feature model listed in Figure 1 can be captured by
the constraints that are listed in Table 1. The constraints

247

Figure 1: The feature model of JCS

Table 1: Constraints of JCS
Chat c(1)
Output ⇐⇒ Chat c(2)
Logging =⇒ Chat c(3)
Authorization =⇒ Chat c(4)
Color =⇒ Chat c(5)
Encryption =⇒ Chat c(6)
Encryption OR =⇒ Chat c(7)
(GUI ∨ CMD ∨GUI2) ⇐⇒ Output c(8)
¬(GUI ∧ CMD) c(9)
¬(GUI ∧GUI2) c(10)
¬(CMD ∧GUI2) c(11)
(Caesar ∨ Reverse) ⇐⇒ Encryption c(12)
Encryption OR ⇐⇒ (Caesar ∨ Reverse) c(13)

are specified according to the semantics of feature model.
Constraint c(1) specifies that the root feature must be present,
to prevent a trivial feature model with no selected feature.
Constraint c(2) specifies the mandatory feature Output and
constraints c(3) – c(7) specify constraints on the other five
optional subfeatures. The subfeatures of Output are in an
Alternative relationship. This is specified using constraints
c(8) – c(11). Constraint c(8) states that Output is selected, if
and only if at least one of CMD, GUI and GUI2 is selected.
Constraints c(9) – c(11) specify that at most one feature
from CMD, GUI and GUI2 can be chosen. The subfeatures
of Encryption are in Or relationship. The constraint c(12)
denotes if Encryption is selected, then at least one feature
from Caesar and Reverse needs to be selected, and vice versa.
The only CTC of JCS is captured in the constraint c(13).
Constraints c(1) – c(12) are called tree constraints, since
they are related to the tree structure of the feature model.
Henceforth, given a feature model M, we simply refer tree
constraints and CTCs of the M, as the constraints of M. We
denote the conjunction of constraints of M as conj (M). We
use Fea(M) to denote the set of entire features of the feature
model M . For the JCS example, Fea(JCS) = {Chat, . . .}
and |Fea(JCS)|=12.

Definition 1 (feasible feature set). Given a fea-
ture model M , a feasible feature set for M is a non-empty
feature set F ⊆ Fea(M), such that F satisfies the constraints
of M .

We write F |= M if F ⊆ Fea(M) is a feasible feature set
of the feature model M .
Example. We use JCS as an example. F = {Chat ,Output ,
GUI } is a feasible feature set of JCS , i.e., F |= JCS .

Initial population Generation

Selection Crossover

Mutation

noyes

The terminating condition holds

Figure 2: Typical flow of evolutionary algorithms

2.3 Multi-objective Optimization Problem
Many real-world problems have multiple objectives that

need to be optimized simultaneously. However, these objec-
tives usually conflict with each other, which prevents opti-
mizing all objectives simultaneously. A remedy is to have a
set of optimal trade-offs between the conflicting objectives.

A k-objective optimization problem could be written in
the following form:

Minimize Obj(F) = (Obj1(F), Obj2(F), ..., Objk(F))

subject to F |= M
(1)

where Obj(F) is a k-dimensional objective vector for F and
Obji(F) is the value of F for ith objective.

Given F1, F2 |= M , F1 can be viewed as better than F2 for
the minimization problem in Equation (1), if Equation (2)
holds.

∀i : Obji(F1) ≤ Obji(F2) ∧ ∃j : Objj(F1) < Objj(F2) (2)

where i, j ∈ {1, . . . , k}.
In such a case, we say that F1 dominates F2. F1 is called

a Pareto-optimal solution if F1 is not dominated by any
other F |= M . We denote all Pareto-optimal solutions as the
Pareto front.

Many evolutionary algorithms (e.g., IBEA [36], NSGA-
II [11], ssNSGA-II [13], MOCell [23]) are proposed to find a
set of non-dominated solutions that approximate the Pareto
front for solving the multi-objective optimization problem.
Problem Statement. Our work addresses the optimal
feature selection, which aims at searching for feasible feature
sets that approximate the Pareto front to solve the multi-
objective optimization problem.

3. FEEDBACK-DIRECTED
EVOLUTIONARY ALGORITHM

In this section, we elaborate our approach in addressing
the optimal feature selection problem. First, we introduce
a preprocessing method to filter out prunable features be-
fore the execution of an EA, in order to reduce the search
space. Second, we illustrate feedback-directed evolutionary
operators that are used in this work to guide an EA for the
optimal feature selection.

3.1 Preliminaries of Evolutionary Algorithms
Evolutionary algorithms (EAs), inspired by the “survival

of the fittest” principle of the Darwinian theory of natural
evolution, are stochastic search methods based on principles
of the biological evolution. By applying the EA, a problem is
encoded into a simple chromosome-like data structure, and
then evolutionary operators (e.g., selection, crossover, and
mutation) are applied on these data structures to preserve
“the fittest” information, which is analogous to “survival of
the fittest” in the natural world. EAs often perform well
in approximating solutions, and therefore EAs are typically

248

Algorithm 1: PrunableFeatures

input : Feature model M
output : Common features Fc ⊆ Fea(M)
output : Dead features Fd ⊆ Fea(M)

1 Fc ← ∅;
2 Fd ← ∅;
3 foreach f ∈ Fea(M) do
4 if ¬SAT (conj (M) ∧ ¬f) then
5 Fc = Fc ∪ f ;

6 else if ¬SAT (conj (M) ∧ f) then
7 Fd = Fd ∪ f ;

8 return (Fc ,Fd);

suitable for the optimization problems especially if the search
space of the problem is large and complex.

A typical workflow of EAs is described in Figure 2. An
EA begins with an initial generation of chromosomes, which
we denote as initial population. Typically, the initial pop-
ulation is generated randomly. Evolutionary operators are
then applied on a generation to evolve into a new generation
of chromosomes. Different EAs have different dominating
criteria, which will be introduced in Section 4.1. The chro-
mosomes that are ranked higher according to the dominating
criteria of the EA have a higher chance to proceed to the
next generation. The evolutionary process continues until the
termination condition is met. An example of the termination
condition might be that the number of generations exceeds
a predefined upper bound n ∈ Z>0.

3.2 Preprocessing of Feature Model
In the following, we introduce the features that could be

pruned from Fea(M) before the execution of an EA. By doing
this, the search space of the EA would be reduced, which
could make the optimal feature selection more efficient.

Our approach of preprocessing is by exploiting the com-
monalities [6] of the products. Observed that some features
must be present in all products derived from M . For example
in JCS , the feature set {Chat ,Output} is shared by all de-
rived products, and we call these features as common features.
Similarly, we call the set of features that must not be used
in all derived products as dead features. Dead features do
not present in JCS but they are common in feature models
of real systems (e.g., Linux X86 kernel and eCos operating
system). Henceforth, we denote common features and dead
features as Fc and Fd respectively, where Fc, Fd ⊆ Fea(M),
and Fc ∩ Fd = ∅. The preprocessed features that are passed
to the execution of EAs is Fea(M)\ (Fc ∪Fd), and we denote
Fc ∪ Fd as prunable features.

The function PrunableFeatures (Algorithm 1) is used to
find common and dead features. Recall that conj (M) rep-
resents the conjunction of all tree constraints and CTCs of
feature model M , and SAT is a function that is used to check
the satisfiability of the constraints. Note that SAT function
is readily provided by many off-the-shelf SAT solvers (e.g.,
SAT4J [2]). We assume that conj (M) is satisfiable, i.e., there
exists at least a valid product from the feature model M . If
conj (M) ∧ ¬f is unsatisfiable (line 4), it implies that feature
f must exist in all derived products of M . Therefore, feature
f is added to common features Fc (line 5). This is similar to
the detection of dead features in lines 6 and 7.

3.3 Genetic Encoding of the Feature Set
The selected features of a feature model is encoded using

an array-based chromosome as shown in Figure 3. Given a
chromosome of length n, array indices are numbered from 0
to n−1. Each feature is assigned with an array index starting
from 0. Each value on the chromosome ranges over {0, 1},
where 0 (resp. 1) represents the absence (resp. presence) of
the feature. Given a feature model M , we define a function
fM : Fea(M) → {Z,⊥} that maps each feature f of the
feature model M to an array index. fM (f1) = ⊥ denotes
that there is no array index that is assigned for the feature
f1. Similarly, we define fM

−1 : Z → Fea(M) as a function
that maps a given array index to the feature it represents.
Example. We show how a feature set on the JCS is encoded.
Note that features Chat and Output have been pruned by
the preprocessing algorithm in Algorithm 1; therefore, they
are not contained in the chromosome (i.e., fM (Chat) =
fM (Output) = ⊥). The features are indexed level by level,
and their indexes have been listed in Figure 3 (e.g., fM (Logg-
ing) = 0). The chromosome in Figure 3 represents the feature
set {Encryption,GUI ,Caesar ,Reverse}.

3.4 Feedback-Directed Evolutionary Operators
The violated constraints of a chromosome Ci provide an

important clue on which features on the chromosome Ci

need to be modified. If we focus on these features, we may
converge faster on the optimal feature selection.

We incorporate this feedback into the crossover and muta-
tion operations, which are the main evolutionary operators
common for almost all EAs. The feedback-directed crossover
and mutation operators provide an effective guidance for
EAs to perform the optimal feature selection.

3.4.1 Feedback-Directed Mutation
The objective of mutation operator is to change some

values in a selected chromosome leading to additional genetic
diversity to help the search process escape from local optimal
traps.

We introduce how the feedback-directed mutation operator
works. Before the mutation, the feedback-directed mutation
analyzes the selected chromosome on the violated constraints.
We denote the corresponding positions on the chromosomes
for the features that are contained in the violated constraints
as error positions.
Example. We illustrate the feedback-directed mutation op-
erator, using the JCS example shown in Figure 3. Given the
values of the chromosome as shown in Figure 3, we can easily
check that it violates the constraint c13. The constraint c13
contains three features, which are Encryption OR, Caesar ,
and Reverse. The corresponding array positions of these
three features are shaded on the chromosome in Figure 3.
These shaded positions are the error positions.

The algorithm FMutation for feedback-directed mutation
are given in Algorithm 2. At line 1, an offspring chromo-
some C is initialized with values in the chromosome P , and
n ∈ Z is initialized with the length of the chromosome P
(line 2). At line 3, Err ∈ P(Z) is assigned with the set
of integers that is returned from ErrPos(C) (which will be
introduced later). The set of integers returned by ErrPos(C)
represents the error positions on the chromosome C. Each
position on the chromosome is iterated (line 4). The func-
tion rand(a, b) (resp., randInt(a, b)), with a > b, chooses a
real (resp., integer) number between numbers a and b. At

249

0 1 2 3 4 5 6 7 8 9

´ c(13): Encryption_OR (4) Û Caesar (8) Ú Reserve (9)

0-Logging
1-Authorization

8-Caesar

.

.

.

4-Encryption_OR
5-GUI

.

.

.

9-Reverse

0 0 1 0 10 1 0 0 1

Figure 3: Feedback-directed mutation operator

P1 0 0 1 0
0 1 2 3 4 5 6

10 1 0 0 1
7 8 9

0 0 0 0 00 1 0 0 0

0 0 0 0 00 0 0 0 0

C1

P2

P1: ´ c(13): Encryption_OR (4) Û Caesar (8) Ú Reserve (9)

P2: ´ c(8): (GUI (5) Ú CMD (6) Ú GUI2 (7)) Û Output

Figure 4: Feedback-directed crossover operator

line 5, if the current position i is an error position, and the
random number is less than the error mutation probablity
Pemut , then the value in the ith-position on the chromo-
some is mutated by randomly choosing an integer between
0 and 1 (line 7). On the other hand, if the position does
not belong to any error position, and the random number
is less than Pmut (line 6), the value in the ith-position is
mutated. Note that the probability Pemut will be set with
a value that is far larger than Pmut , so that the mutation
occurs more frequently on error positions. For Pemut and
Pmut , example values could be 1.0 and 0.0000001. Note that
we set Pmut much lower than classic mutation probability
(e.g. 0.001-0.05 [31]). This is because lower Pmut with higher
Pemut would lead to faster convergence, since it allows faster
correction of constraint violations by minimizing the changes
of non-error positions and focusing on the changes of error
positions. This is demonstrated in Section 4.3.

We now introduce the ErrPos function described in Algo-
rithm 3. At line 1, ePos is initialized with an empty set. The
valuation function Π : Fea(M)→ {true, false} (line 3) maps
each feature f of the feature model M to a Boolean value
that denotes whether the corresponding feature is selected.
The mappings in Π are populated according to the values on
the chromosome (line 5). Subsequently, common and dead
features are added to the mappings in Π with values true
and false respectively (lines 7–9). The reason is that common
(dead resp.) features must (must not resp.) belong to any
feasible feature set of feature model M as explained in Sec-
tion 3.2. At line 11, Π 6|= constraint holds iff replacing each
feature f contained in the constraint with Π(f) evaluates to
false. In other words, Π 6|= constraint means that the selec-
tion represented by chromosome C violates the constraint
constraint . In such a case, the function getFeatures(c) is
used to get the features that are contained in the constraint
c (line 12). For example, given the constraint c(13) in Ta-
ble 1 for JCS as an input, getFeatures will return {4, 8, 9}.
These array indexes that represent the error positions will
be included in ePos.

Algorithm 2: FMutation

input : Chromosome P
input : Error mutation probability Pemut

input : Mutation probability Pmut

output : Chromosome C

1 C ← P ;
2 n ← |P |;
3 Err ← ErrPos(C);
4 for i = 0 to n− 1 do
5 if (i ∈ Err ∧ rand(0, 1) < Pemut)∨
6 (i /∈ Err ∧ rand(0, 1) < Pmut) then
7 C[i]← randInt(0, 1);

8 return C;

Algorithm 3: ErrPos

input : Chromosome C
input : A set of constraints constraints
output : A set of integers ePos

1 ePos ← ∅;
2 n ← |C1 |;
3 Π ← ∅;
4 for i = 0 to n− 1 do
5 Π ← Π ∪ {fM−1(i) 7→ (C [i] 6=0)};
6 foreach feature ∈ Fc do
7 Π ← Π ∪ {Fc 7→ true};
8 foreach feature ∈ Fd do
9 Π ← Π ∪ {Fd 7→ false};

10 foreach constraint ∈ constraints do
11 if Π 6|= constraint then
12 ePos ← ePos ∪ getFeatures(constraint);

13 return ePos;

3.4.2 Feedback-Directed Crossover
The crossover operation is used to generate offsprings by

exchanging values in a pair of chromosomes chosen from
the population, and it happens with a probability Pcross

(the crossover probability). The feedback-directed crossover
operator uses values in the non-error positions to crossover.
The objective for using values from non-error positions is to
pass the “good genes” to offsprings.
Example. We demonstrate the feedback-directed crossover
operator, using the JCS example shown in Figure 4. Sup-
pose the chromosomes P1 and P2 have violated constraints
c(13) and c(8) respectively. The offspring chromosome C1

is first initialized as the same values with the chromosome
P1. We now show that how the feedback-directed crossover
is performed. The values from non-error positions of the
chromosome P2 are copied to the chromosome C1 (shown
by the arrows). This results in the chromosome C1 that is
shown in Figure 4. The production of the chromosome C2

(not shown in the graph) is symmetric to the production of
the chromosome C1.

The algorithm FCrossover of feedback-directed crossover
operator is given in Algorithm 4. The chromosomes C1 and
C2 are initialized with the values from chromosomes P1 and
P2 respectively (lines 1, 2). If the generated random num-

250

Algorithm 4: FCrossover

input : Chromosome P1

input : Chromosome P2

input : Crossover probability Pcross

output : Chromosomes C1, C2

1 C1 ← P1 ;
2 C2 ← P2 ;
3 n ← |P1 |;
4 if rand(0, 1) < Pcross then
5 if |ErrPos(P1)| > 0 ∧ |ErrPos(P2)| > 0 then
6 for i = 0 to n− 1 do
7 if i /∈ ErrPos(P1) then
8 C2[i]← P1[i];

9 if i /∈ ErrPos(P2) then
10 C1[i]← P2[i];

11 else
12 crossIndex ← randInt(0, n−1);
13 for i = crossIndex to n−1 do
14 C1[i]← P2[i];
15 C2[i]← P1[i];

16 return (C1, C2);

ber is smaller than the crossover probability Pcross (line 4),
then it will perform the crossover operation. First, it verifies
whether there exists any error position in chromosomes P1

and P2, by checking whether the size of their error positions
is greater than 0 (line 5). If it is, then the feedback-directed
crossover will be performed. The algorithm iterates through
the chromosome (line 6), and copies the values of non-error
positions from chromosome P1 (resp., P2) to the correspond-
ing positions in chromosome C2 (resp., C1) (lines 7–10).

Otherwise, if both chromosomes P1 and P2 do not have any
error position, the classic single point crossover operator is
applied. First, an array index, crossIndex ∈ {0, . . . , n−1}, is
randomly selected. Subsequently, all values starting from the
position crossIndex are copied from chromosome P2 (resp.,
P1) to chromosome C1 (resp., C2) (lines 12–15).

4. EVALUATION

We conducted experiments to evaluate our approach. Specif-
ically, we attempted to answer the following questions:

RQ1. How is the improvement of the solutions that found by
our method compared to the existing state-of-the-art
methods in terms of the correctness of the solutions?

RQ2. What is the runtime of our method compared to the
existing state-of-the-art methods?

RQ3. Can our method be generalized to different EAs?

RQ4. How scalable is our method in terms of the size of
feature models?

4.1 Setup

4.1.1 Implementation
We have implemented our approach based on jMetal [12],

which is a Java-based open source framework that supports

Table 2: Feature Models
Repo. Model Fea. Cons. Fp F ′p Ref.

– JCS 12 13 2 – –

SPLOT
Web Portal 43 36 4 – [21]

E-Shop 290 186 28 – [35]

LVAT

eCos 1244 3146 54 19 [30, 35]

uClinux 1850 2468 1244 1244 [5]

Linux X86 6888 343944 156 94 [30]

multi-objective optimization with EAs. Sayyad et.al [29, 27]
have made an extensive experiments to test how different
EAs implemented on jMetal could contribute to the optimal
feature selection. We use the EAs that are reported to work
well in their experiments, and evaluate how the preprocessing
and feedback-directed mechanisms affect these EAs. The
EAs we are using for the evaluation are:

1. IBEA: Indicator-Based Evolutionary Algorithm [36]

2. NSGA-II: Nondominated Sorting Genetic Algorithm
[11]

3. ssNSGA-II: Steady-state NSGA-II [13]

4. MOCell: A Cellular Genetic Algorithm for Multi-objective
Optimization [23]

A brief overview of these EAs are provided in Table 3.

4.1.2 Quality Indicators
To measure the quality of Pareto front, we make use of two

indicators in this work: hypervolume [37] and spread [11].

a) Hypervolume (HV): Hypervolume of the solution set
S = (x1, . . . , xn) is the volume of the region that is
dominated by S in the objective space. In jMetal,
although all objectives are minimized, but the Pareto
front is inverted before the hypervolume is calculated.
Therefore, the preferred Pareto front would be with
the most hypervolume.

b) Percentage of Correctness (%Correct): There might
be solutions that violate some constraints in the Pareto
front, since the correctness is an optimization objective
that evolves over time. Solutions that are correct (i.e.,
without violating any constraint) are more useful to
the user; therefore we are interested in the percentage
of solutions that are correct in the Pareto front.

4.1.3 Feature Models and Attributes
The details of feature models used in the experiment are

summarized in Table 2, with the repository information
(Repo.), number of features (Fea.), number of constraints
(Cons.), number of prunable features with the preprocessing
method in Algorithm 1 (Fp), number of prunable features
with the preprocessing method in [28] (F ′p), and literatures
(Ref.) associated with each feature model.

JCS feature model is the feature model that we have used
throughout the paper. Two feature models Web Portal and
E-Shop are from SPLOT respository [22], which is a repos-
itory used by many researchers as a benchmark. The Web
Portal model captures the configurations of Web portal prod-
uct line, and the E-Shop model, which is one of the largest
feature models in SPLOT, captures a B2C system with fixed
priced products. These two models are chosen to facilitate

251

Table 3: Brief overview of EAs

Algorithm Population Operators Criteria for Domination
Objective of the

Criteria

IBEA
Main and
Archive

Crossover, Mutation,
Environmental

Selection

The amount of domination
are calculated based on
quality indicator, e.g.,

hypervolume.

Favors user preferences.

NSGA-II Main
Crossover, Mutation,

Tournament
Selection

Distances to closest point of
each objective are

calculated. Favors the point
with greater distance from

other objectives.

Favors more spread out
solutions and absolute

domination.

ssNSGA-
II

Main
Crossover, Mutation,

Tournament
Selection

Similar to NSGA, with the
exception that only one new

individual inserted into
population at a time.

Favors more spread out
solutions and absolute

domination.

MOCell
Main and
Archive

Crossover, Mutation,
Tournament

Selection, Random
Feedback

Similar to NSGA, a ranking
and a crowding distance

estimator is used, but bigger
distance values are favored.

Favors more spread out
solutions and absolute

domination.

the comparison with [29]. To further evaluate the scalabil-
ity of our methods, we make use of feature models from the
Linux Variability Analysis Tools (LVAT) feature model repos-
itory [1]. The models in LVAT were reversed-engineered by
making use of source code, comments and documentations of
big projects such as Linux kernel and eCos operating system.
Compared to the feature models in SPLOT, the feature mod-
els in LVAT contain a significant larger number of features
and constraints, and have higher branching factors, but they
have lower ratios of feature groups, and hence shallower tree
structures in general.

Note that Fp always contains same number or more fea-
tures than F ′p – this shows that our preprocessing method
with Algorithm 1 has found more prunable features than [28].
In [28], their preprocessing method is based on static analy-
sis. In particular, they detect disjunctions (rules) with only
one feature, which means the feature is either a common
feature or a dead feature. In addition, they investigate the
disjunctions (rules) that include two features, if one of them
is prunable in the first round, and the other one could be
prunable as well. It is easy to see that our method based on
SAT solving could detect all features that could be found by
preprocessing method in [28], and it can be shown that Fp

is always not fewer than F ′p .

4.1.4 Feature Attribute
Each feature in the feature models has the following at-

tributes, which are the same as the attributes used in [29]:

1. Cost ∈ R, records the number of cost incurred to use the
feature. For each feature, the Cost value is assigned
with a real number that is normally distributed between
5.0 and 15.0.

2. Used Before ∈ {true, false}, indicates whether this fea-
ture was used before. The value of Used Before is true
if the feature has been used before, otherwise it is false.
For each feature, the Used Before value is assigned with
a Boolean value that is distributed uniformly.

3. Defects ∈ Z, records the number of defects known in the
feature. For each feature, the Defects value is assigned
with an integer number that is normally distributed
between 0 and 10. However, if the feature has not been
used before, the Defects value is set to 0.

4.1.5 Optimization Objectives
We introduce the five optimization objectives that we use

in the experiment in the following. Note that since jMetal
requires minimization of the objectives; all objectives listed
here are objectives to be minimized.

Obj1. Correctness: minimize the number of violated con-
straints of the feature model.

Obj2. Richness of features: minimize the number of features
that are not selected.

Obj3. Cost: minimize the total cost.

Obj4. Feature used before: minimize the number of features
that have not been used before.

Obj5. Defects: minimize the number of known defects.

We specify correctness as an objective, rather than a con-
straint. The reason is that this allows EA to nudge the
search towards feature models that contain fewer violated
constraints, which eventually lead to valid feature models
that do not contain violated constraints. Furthermore, note
that some objectives are conflicting, e.g., Obj2 and Obj3,
because the richness of features would imply a higher cost,
but at the same time the cost needs to be minimized.

4.1.6 Configurations of EAs
Given an EA, we introduce the configurations for compar-

ison.

1. F+P: This is the EA that makes use of feedback-directed
crossover and mutation (Section 3.4) and preprocessing
(Section 3.2) is applied before the execution of the
feedback-directed EA.

2. U+P: The unguided version of EA with preprocessing
(Section 3.2) applied before the execution of the un-
guided EA. We have demonstrated that, our method
has found more prunable features than the preprocess-
ing method of [28] in Section 4.1.3; therefore, U+P
can be seen as an improved version of [28] with smaller
search space.

3. U: The unguided version of EA without preprocessing,
which is used by [29, 27].

252

Table 4: Evaluation with SPLOT

Model
IBEA NSGAII ssNSGAII MOCell

F+P U+P U F+P U+P U F+P U+P U F+P U+P U

E-shop

Time (ms) 6994 6369 7401 1906 2150 2548 15214 16863 17541 2822 3964 4463

HV 0.3 0.18 0.19 0.26 0.2 0.17 0.24 0.22 0.22 0.24 0.19 0.22

%Correct 100.0 0.0 0.0 12.0 0.0 0.0 15.0 0.0 0.0 14.0 0.0 0.0

Web Portal

Time (ms) 5678 4596 4646 433 483 546 8309 8315 8221 1033 1793 1857

HV 0.32 0.2 0.23 0.3 0.24 0.21 0.3 0.21 0.24 0.31 0.21 0.22

%Correct 100.0 1.0 0.0 28.0 0.0 0.0 20.0 1.0 0.0 41.0 0.0 0.0

JCS

Time (ms) 4681 4318 4735 271 269 301 7289 6834 6890 271 432 595

HV 0.31 0.3 0.28 0.3 0.29 0.28 0.29 0.29 0.29 0.33 0.31 0.3

%Correct 96.0 78.0 54.0 27.0 22.0 16.0 31.0 24.0 14.0 34.0 21.0 18.0

Table 5: Evaluation with LVAT

Model
IBEA

F+P F’+P U+P

eCos

Time (ms) 33245 51279 58561

HV 0.25 0.21 0.18

%Correct 100.0 61.45 0.0

E50 6300 62400 –

uClinux

Time (ms) 50668 43876 46986

HV 0.31 0.29 0.28

%Correct 100.0 100.0 0.0

E50 600 2100 –

Linux X86

Time (ms) 32758 31396 37472

HV 0.2 0.2 0.22

%Correct 0.0 0.0 0.0

E50 – – –

4.1.7 Parameter Settings
For U , the same as [27], single-point crossover and bit-

flip mutation are used as crossover and mutation operators,
with crossover and mutation probabilities set to 0.1 and
0.01 respectively. These operators and probabilities also
apply to U + P . For F + P , the feedback-directed crossover
(Algorithm 4) and feedback-directed mutation (Algorithm 2)
operators are used. The error mutation probability Pemut ,
mutation probability Pmut , and crossover probability Pcross

are set to 1.0, 0.0000001, and 0.1 respectively. All other
parameter settings for each EA are default settings of jMetal
(e.g., population size is set to 100), and therefore are omitted
here.

For SPLOT case study, we make use of 25000 evaluations
using four EAs (IBEA, NSGAII, ssNSGAII, and MoCell).
For the larger LVAT case study, we make use of 100000
evaluations using IBEA. For both case studies, we generate
10 sets of attributes. For each set of attributes, we run each
EA repeatedly for 30 times, and report the medium values
of the metrics. The evaluation results for SPLOT and LVAT
are reported in Table 4 and Table 5 respectively.

We make use of Mann Whitney U-test [3] to test the
statistical significant of %Correct indicator. We highlight
the %Correct in bold for F + P , if the confidence level
exceeds 95% when comparing F + P and U + P .

The experiments were conducted on an Intel Core I7 4600U
CPU with 8 GB RAM, running on Windows 7.

4.2 Evaluation with SPLOT
Table 4 demonstrates our results with SPLOT case study,

where Time(ms), HV , and %Correct represent execution

Table 6: Improvement of EAs on SPLOT
Time (ms) HV %Correct

IBEA -690 0.08 72.33%
NSGA-II 97.33 0.05 15%

ssNSGA-II 400 0.04 13.67%
MOCell 687.67 0.06 22.67%

Table 7: Improvement of EAs on LVAT
Time (ms) HV %Correct

IBEA 4290.5 0.02 50%

time in milliseconds, hypervolume and percentage of correct
solutions in the Pareto front.
RQ1: We notice that the IBEA has outperformed other
methods on the percentage of correctness. This is conformed
to the observation in [29]. According to [29], this is because all
EAs used in this case study (other than IBEA) use diversity-
based selection criteria, which favor higher distances between
solutions. For this reason, non-IBEA methods tend to re-
move solutions that crowded towards the zero-violation point,
thus achieving lower scores on the percentage of correctness
measure.

We also notice that for each EA, the configuration U + P
outperforms the configuration U on the percentage of correct-
ness. This is because the preprocessing method has filtered
away the prunable features, which makes the search space
smaller. Hence EAs are more effective in the optimal feature
selection. We also observe that F +P outperforms U +P con-
stantly on the percentage of correctness. This is attributed
to the feedback-directed crossover and mutation, which have
effectively guided EAs to explore more promising region of
the solution space for locating the optimal feature selection.
The average improvement for the configuration F + P over
U + P is summarized in Table 6, where the values are cal-
culated by summing up the differences of %Correct between
F + P and U for all tested EAs, and divided by three (the
number of test cases). Positive values mean improvements,
while negative value mean the opposite. This has shown
that our methods have provided an improvement on the
percentage of correctness for all case studies using different
EAs, especially in IBEA which has 72.33% improvement of
correctness. These results answer research question RQ1.
RQ2: The runtime of configurations F + P , U + P , and
U are comparable. There does not exist a configuration
that has a clear advantage over the others in terms of the
runtime. The reason is that all configurations go through
the same number of evaluations. One might think that the
configuration F +P requires an extra calculation of the error
position using Algorithm 3. In fact, the constraints also need

253

to be enumerated for configurations U + P and U during
each round of evolution, in order to calculate the number
of violated constraints. Therefore, the extra operation of
F +P is only the getFeatures function that is used in line 12
of Algorithm 3, which has a low complexity. On the other
hand, F + P and U + P have shorter chromosome than U
due to the preprocessing. However, these does not reflect
much on the results, because the selection, mutation, and
crossover for chromosomes could be done efficiently. These
results answer research question RQ2.
RQ3: To answer research question RQ3, we notice that the
percentage of correctness of all tested EAs (IBEA, NSGA-
II, ssNSGA-II and MOCell) have been improved by using
F + P . These results convey to us that, the preprocessing
method and feedback-directed crossover and mutation have
provided an advantage on the percentage of correctness and
HV, regardless of the underlying EAs. The reason is that
the preprocessing method effectively prunes the search space,
and the feedback-directed crossover and mutation allow un-
derlying EAs to use the feedback for faster finding of valid
solutions. This also shows that the preprocessing method
and feedback-directed crossover and mutation are general
methods that could be applied for different EAs.
RQ4: To answer the research question RQ4, we make use of
the E-shop model. E-shop model contains one of the largest
set of features in the SPLOT repository [22]. The results
show that, with U +P and U , none of the EAs could locate a
correct solution. On the other hand, with F + P , IBEA has
achieved 100% of correctness, while NSGA-II, ssNSGA-II
and MOCell have achieved 12–14% of correctness. We have
also further evaluated for 50 millions rounds of evolution for
U + P for IBEA. It has only achieved 46% of correctness
after 50 millions rounds which takes 3.25 hours. In contrast,
the configuration F + P has achieved 100% of correctness
by just 6.9 seconds.

To confirm the scalability of feedback-directed IBEA, we
conduct the evaluation using LVAT in the next section.

4.3 Evaluation with LVAT
Table 5 demonstrates our results with LVAT case study

with IBEA, where E50 represents the number of executions
required to obtain 50% of correct solutions in the Pareto
front. Configuration F ′ + P is the same as F + P , with the
exception that the mutation probability Pmut is set to 0.01
(for F + P , Pmut = 0.0000001). The average improvement for
the configuration F +P over U +P is summarized in Table 7.
We notice that for eCos and uClinux, F + P achieves 100%
correctness for all cases, while U+P does not find any correct
solution after 100000 executions. Although F + P achieves
overall better runtime, it does not has clear advantage over
U + P for all models. These results have confirmed for
the better percentage of correctness (RQ1) and comparable
runtime (RQ2) of F + P over U + P . For Linux X86 which
contains 6888 features, none of the methods (F + P , U + P ,
and U) have found a correct solution. Therefore, we resort
to the “seeding method” proposed by [28].

In [28], the authors make use of two methods, i.e., SMT
solver and IBEA of two objectives, for finding a correct solu-
tion (the “seed”), and plant the seed in the initial population
of IBEA with the hope to find more valid solutions. We
run two seeding methods proposed by [28] with F + P , and
compare the results with the improved version of method
proposed by [28], i.e., U + P .

First, Microsoft Z3 SMT solver [10] is used to find a seed.
In our case, Z3 successfully finds a valid solution in around
three seconds (we repeat for 30 times, and medium of the
number of selected features is 1455). With the seed, F + P
successfully find 34 correct solutions using no longer than 30
seconds. In contrast, U + P does not find any new solution
after 30 minutes.

Second, IBEA with two objectives is used to generate the
seed. In our case, F + P uses less than 40 seconds to get
36 correct solutions. While for U + P , it spends a total of
3.5 hours of execution time for 30 correct solutions and 4
hours of execution time for 36 correct solutions. F + P has
shortened the search time of U + P for more than 200 times.
In particular, U + P spends 3 hours to generate the seed,
and spends half an hour to obtain 30 correct solutions. And
given another half an hour, U + P finally obtains 36 correct
solutions.

These results have shown that F +P outperformed U +P
given both seeding methods in [28]. Note that the seed
generated by IBEA with two objectives, is better than the
seed generated by the Z3 SMT solver. Both F + P and
U + P find more solutions using seed generated from IBEA
with two objectives. This is conformed to the observation
in [28]. According to [28], it is because the seed generated by
IBEA with two objectives has more selected features, and
the “feature-rich” seed allows the effective search of other
valid solutions.

We also compare how the mutation parameter Pmut affects
feedback-directed IBEA. Out of five models, F ′ + P only
performs poorer than F + P in eCos. To better observe the
effect, we make use of E50 . It shows that F + P obtained
50% of correct solutions in Pareto front in a smaller number
of evaluations for all models, except LinuxX86 . The results
show that smaller Pmut leads to faster convergence of correct
solutions in Pareto front. This is because smaller Pmut mini-
mizes the modification of non-error positions; therefore, it
allows IBEA to focus more on the correction of constraint
violations.

4.4 Threats to Validity
There are several threats to validity. The first threat of va-

lidity is due to the fact that values for the feature attributes
(i.e., Cost, Defects, and Used Before) were randomly gener-
ated. This is due to difficulty in obtaining the attributes that
are associated with real-world products since many of them
are proprietary. To mitigate the effect of randomness, we gen-
erate 10 set of attributes for each case study. Furthermore,
for each set of attributes, we run each EA repeatedly for 30
times, and report the medium values of the metrics. Future
work should involve the use of real data for the evaluation.

The second threat of validity stems from our choice of
using an exemplar parameter set (e.g., for crossover and
mutation probability), which comes with the default setting
of jMetal, in order to cope with the combinatorial explosion
of options. To address these threats, it is clear that more
experimentations with different feature models and experi-
mental parameters are required, so that we could investigate
effects that have not been made explicit by our dataset and
experimental parameters.

5. RELATED WORK
Our work is related to the feasible feature selection. In

[34], White et al. reduced the feature selection problem in

254

SPL to a multidimensional multi-choice knapsack problem
(MMKP). They proposed a polynomial time approximation
algorithm, called Filtered Cartesian Flattening (FCF), to
derive an optimal feature configuration subject to resource
constraints. Their evaluation showed that FCF can stably
achieve the optimality above 90% even when the number of
resources increases up to 91, while the optimality of Con-
straint Satisfaction Problem (CSP) based Feature Selection
in [4] drops down to 30% when there are 91 resources.

Although FCF in [34] can achieve a highly optimal solution,
but it requires significant computing time. To address the
problem of scalability, Guo et al. [14] presented GAFES (a
genetic algorithm based approach). The rationale is that
GAs are quite suitable for the highly constrained problems,
such as the feature selection (product derivation) problem.
GAFES integrated a new repair operator for feature selection
and also defined a penalty function for resource constraints.
The evaluation showed GAFES may not beat the FCF and
CSP in optimality, but it scaled up to large-scale models
with a reasonable optimality.

Genetic algorithm only allows single objective function,
and in addition, the method proposed in [14] repairs each
solution explicitly, and does not take advantage of the evolu-
tion of GA algorithm for repairing. To address this problem,
Sayyad et al. [29] investigated the use of different types of
EAs that support multi-objective function for the optimal
feature selection. They adopted 7 types of EAs, such as
IBEA, NSGA-II and MOCell, to search for the optimal prod-
uct. The results have shown that IBEA performs much
better than other 6 EAs in terms of time, correctness and
satisfaction to user preferences. In [27], Sayyad et al. im-
proved [29] by turning down the crossover probability from
0.9 to 0.1 and mutation probability from 0.05 to 0.01, and
they reported HV-mean and spread mean may increase by
5% to 10% in most cases. In [28], Sayyad et al. proposed the
use of EA with simple heuristic in larger product lines from
LVAT repository. They proposed the use of static analysis to
identify prunable features for reducing search space, and the
use of seeded techniques to find more correct products from
Linux X86 Kernel. Our method has improved the method
proposed in [29, 27, 28] by incorporating feedback-directed
mechanism for EAs (cf. Section 4 for the evaluation). We also
show that our method for finding prunable feature with Al-
gorithm 1 is always not fewer than the method proposed
in [28] (cf. Section 4.1.3 for the explanation and evaluation).

Our method is relevant to searching valid features for a
feature model. In [25], an experiment for measuring the
efficiency of BDD, SAT, and CSP solvers is conducted us-
ing feature models from SPLOT repository. They reported
long run times for certain operations, and certain runs are
cancelled if exceeded three hours. They also reported an
exponential runtime increase with the number of features
for non-BDD solvers on the “valid” operations. In [26], the
state-of-art solvers, e.g., JavaBDD BDD solver, the JaCoP
CSP solver and the SAT4J SAT solver, were used to an-
swer the questions such as “derive one valid product from
a feature model” and “number of products”. They found
that CSP and SAT solvers have exponential runtime increase
as the feature size of feature model increases, and BDD re-
quires a maximum of 28 seconds to derive a valid product
for web-portal, even without considering the quality of fea-
ture attributes. Thus, these automated reasoning techniques
can be precise, but generally not scalable for large feature

models. Our work complements with their work by using
feedback-directed evolutionary algorithm that scales well for
large feature models. In [15] introduces five novel parallel
algorithm for Multi-Objective Combinatorial Optimization
(MOCO) to allow parallel processing. Our work complements
with them by considering feedback-directed mechanism for
MOCO problem using feedback-directed EAs.

Our work is also related to the feedback-directed meth-
ods in software engineering. Pacheco et al. [24] proposed
RANDOOP, a feedback-directed mechanism for performing
random test. It uses erroneous results of previous method
invocation to generate a better random test. Clarke et al. [7]
proposed CEGAR, which uses spurious counterexamples as
a feedback to guide the refinement process. Our method is
on feedback-directed methods in EAs for the optimal feature
selection. This work is also related to using evolutionary
algorithms and SMT solvers in tackling software engineer-
ing problems. In [33], we make use of genetic algorithm in
calculating the optimal recovery plan during service failure.
In [32, 20], we calculate the local time requirements of in-
dividual components given the global time requirement of
the system with Z3 SMT solver [10]. In this work, our focus
in on making use of evolutionary algorithms and Z3 SMT
solver in tackling optimal feature selection.

In addition to the SPL domain, multi-objective evolu-
tionary optimization algorithms (MEOAs) have also been
applied to various software engineering problems. In [17],
Harman et al. proposed the term Search-Based Software
Engineering (SBSE), and reported that the surveyed and
proposed optimization techniques for SE problems by 2001
were all single-objective based. Seeing the potential of using
multi-objective optimization, Harman [16] discussed about
the possible usage of the meta-heuristic search techniques
such as: simulated annealing and genetic algorithm. Har-
man considered it insensible combination of multiple metrics
into an aggregate fitness in the way of assigning coefficients,
and further suggested to use Pareto optimality rather than
aggregate fitness.

6. CONCLUSION AND FUTURE WORK
In this work, we have presented a novel technique by

introducing a feedback-directed mechanism into various EAs.
Our approach is based on analyzing violated constraints, and
uses the analyzed results as a feedback to guide the process
of crossover and mutation operators. In addition, we also
introduce a preprocessing technique to reduce the search
space, by filtering away the prunable features in all feasible
feature sets. Our evaluation shows that both the prepro-
cessing technique and the feedback-directed mechanism have
improved over existing unguided EAs on the optimal fea-
ture selection. Without compromising on running time, the
feedback-directed IBEA successfully found 72.33% and 75%
more correct solutions for case studies in SPLOT and LVAT
repositories, compared to the unguided IBEA. In addition,
with“seeding method”proposed by [28] and feedback-directed
IBEA, we have reduced the running time from about 3.5 – 4
hours to less than 40 seconds for finding 34 correct solutions.

As future works, first, we plan to find other types of
feedback that could be incorporated in EAs, to address the
scalability problem of large feature models, such as Linux X86.
Second, we would investigate extensibility of our method to
other software engineering problems. Lastly, we plan to
further evaluate the method using different case studies.

255

7. REFERENCES
[1] Linux Variability Analysis Tools (LVAT) Repository.

https://code.google.com/p/linux-variability-analysis-
tools/source/browse/?repo=formulas.

[2] SAT4J – The boolean satisfaction and optimization
library in Java. http://www.sat4j.org/.

[3] A. Arcuri and L. C. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In ICSE, pages 1–10, 2011.

[4] D. Benavides, P. T. Mart́ın-Arroyo, and A. R. Cortés.
Automated reasoning on feature models. In CAiSE,
pages 491–503, 2005.

[5] T. Berger, S. She, R. Lotufo, K. Czarnecki, T. Berger,
S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.
Variability modeling in the systems software domain.
Technical report, University of Waterloo, 2012.

[6] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H.
Obbink, and K. Pohl. Variability issues in software
product lines. In PFE, 2001.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. In CAV, pages 154–169, 2000.

[8] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,
3rd edition, Aug. 2001.

[9] K. Czarnecki and U. W. Eisenecker. Generative
programming - methods, tools and applications.
Addison-Wesley, 2000.

[10] L. M. de Moura and N. Bjørner. Z3: an efficient SMT
solver. In TACAS, pages 337–340, 2008.

[11] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-II. IEEE Trans. Evolutionary Computation,
6(2):182–197, 2002.

[12] J. J. Durillo and A. J. Nebro. jmetal: A java framework
for multi-objective optimization. Advances in
Engineering Software, 42(10):760–771, 2011.

[13] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. On
the effect of the steady-state selection scheme in
multi-objective genetic algorithms. In EMO, pages
183–197, 2009.

[14] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. Journal
of Systems and Software, 84(12):2208–2221, 2011.

[15] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside,
K. Czarnecki, S. Apel, and J. M. Atlee. Scaling exact
multi-objective combinatorial optimization by
parallelization. In ASE, 2014.

[16] M. Harman. The current state and future of search
based software engineering. In FOSE, pages 342–357,
2007.

[17] M. Harman and B. F. Jones. Search-based software
engineering. Information & Software Technology,
43(14):833–839, 2001.

[18] I. Jacobson, M. L. Griss, and P. Jonsson. Software
reuse - architecture, process and organization for
business. Addison-Wesley-Longman, 1997.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical Report CMU/SEI-90-TR-21,

Carnegie Mellon University, November 1990.

[20] Y. Li, T. H. Tan, and M. Chechik. Management of time
requirements in component-based systems. In FM,
pages 399–415, 2014.

[21] M. Mendonça, T. T. Bartolomei, and D. D. Cowan.
Decision-making coordination in collaborative product
configuration. In SAC, pages 108–113, 2008.

[22] M. Mendonça, M. Branco, and D. D. Cowan.
S.P.L.O.T.: software product lines online tools. In
OOPSLA Companion, pages 761–762, 2009.

[23] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and
E. Alba. Mocell: A cellular genetic algorithm for
multiobjective optimization. Int. J. Intell. Syst.,
24(7):726–746, 2009.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE,
pages 75–84. IEEE Computer Society, 2007.

[25] R. Pohl, K. Lauenroth, and K. Pohl. A performance
comparison of contemporary algorithmic approaches for
automated analysis operations on feature models. In
ASE, pages 313–322, 2011.

[26] R. Pohl, V. Stricker, and K. Pohl. Measuring the
structural complexity of feature models. In ASE, pages
454–464, 2013.

[27] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Optimum feature selection in software product lines:
Let your model and valuesguide your search. In
CMSBSE, pages 22–27, 2013.

[28] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Scalable product line configuration: A straw to break
the camel’s back. In ASE, 2013.

[29] A. S. Sayyad, T. Menzies, and H. Ammar. On the value
of user preferences in search-based software engineering:
a case study in software product lines. In ICSE, pages
492–501, 2013.

[30] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. Reverse engineering feature models. In
ICSE, pages 461–470, 2011.

[31] M. Srinivas and L. M. Patnaik. Adaptive probabilities
of crossover and mutation in genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics,
24(4):656–667, 1994.

[32] T. H. Tan, É. André, J. Sun, Y. Liu, J. S. Dong, and
M. Chen. Dynamic synthesis of local time requirement
for service composition. In ICSE, pages 542–551, 2013.

[33] T. H. Tan, M. Chen, É. André, J. Sun, Y. Liu, and J. S.
Dong. Automated runtime recovery for qos-based
service composition. In WWW, pages 563–574, 2014.

[34] J. White, B. Dougherty, and D. C. Schmidt. Selecting
highly optimal architectural feature sets with filtered
cartesian flattening. Journal of Systems and Software,
82(8):1268–1284, 2009.

[35] Y. Xue, Z. Xing, and S. Jarzabek. Understanding
feature evolution in a family of product variants. In
WCRE, pages 109–118, 2010.

[36] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In PPSN, pages 832–842, 2004.

[37] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
pareto approach. IEEE Trans. Evolutionary
Computation, 3(4):257–271, 1999.

256

