
VeriWS: A Tool for Verification of Combined Functional and
Non-functional Requirements of Web Service Composition

Manman Chen* Tian Huat Tan† Jun Sun† Yang Liu‡

Jin Song Dong*

*National University of Singapore, Singapore
†Singapore University of Technology and Design, Singapore

‡Nanyang Technological University, Singapore, Singapore
{chenman, dongjs}@comp.nus.edu.sg, {tianhuat tan, sunjun}@sutd.edu.sg

yangliu@ntu.edu.sg

ABSTRACT
Web service composition is an emerging technique to develop Web
applications by composing existing Web services. Web service com-
position is subject to two important classes of requirements, i.e.,
functional and non-functional requirements. Both are crucial to
Web service composition. Therefore, it is desirable to verify com-
bined functional and non-functional requirements for Web service
composition.

We present VeriWS, a tool to verify combined functional and
non-functional requirements of Web service composition. VeriWS
captures the semantics of Web service composition and verifies it
directly based on the semantics. We also show how to describe Web
service composition and properties using VeriWS. The YouTube
video for demonstration of VeriWS is available at https://sites.
google.com/site/veriwstool/.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Verification, Reliability, Performance

Keywords
Web service composition, verification, functional requirements, non-
functional requirements

1. INTRODUCTION
Web service technologies enable dynamic inter-operability of

heterogeneous and distributed Web-based platforms. Web service
composition makes use of existing Web services to build new Web
applications based on Service Oriented Architecture (SOA). The
result of Web service composition is called a composite service and
the Web services that constitute the composite service are called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

component services. The de facto standard for Web service com-
position is Web Services Business Process Execution Language
(WS-BPEL) [5], an XML-based orchestration business process lan-
guage for describing the behavior of a business process based on
its interactions with its component services. It supports various
compositional structures such as sequence, parallel composition,
conditional choice, etc., to facilitate the composition of Web ser-
vices.

There are two crucial classes of requirements for Web service
composition, i.e., functional and non-functional requirements. Func-
tional requirements are related to the conformance of Web service
composition to the requirements on its functionality, whereas non-
functional requirements are related to the quality of service (QoS),
e.g., response time, availability, and cost. Non-functional require-
ments can determine the success or failure on Web service compo-
sition, as the Web service composition that is functionality correct
but with poor performance is not likely to be adopted by the users.
To guarantee the performance of Web service composition, the
non-functional requirements are often noted down in service-level
agreements (SLAs), which are a contractual basis between service
consumers and service providers on the expected QoS level. Given
a computer purchasing service (CPS), e.g., Dell.com, an example
of functional requirements is that “the CPS always replies to users
with the purchasing status", whereas an example of non-functional
requirements is that “the CPS always responds within 3 seconds".

Concurrency has been frequently used in Web service compo-
sition. Nevertheless, concurrency often leads to subtle bugs as
programmers have to deal with issues like multi-threads and critical
regions. Yin et al. [19] reports 39% of concurrency bugs are not
fixed correctly and concurrency bugs are the most difficult to fix
among common bug types. Thus, it is desirable to apply automatic
verification techniques on WS-BPEL, e.g., model checking [4].
Existing tools have provided verification for either functional re-
quirements [7, 9, 2, 13, 16] or non-functional requirements [20],
however, they could not support for combined functional and non-
functional requirements. An example of combined functional and
non-functional requirements is “CPS will always reply to the user,
and when CPS replies to the user, the delay of CPS will not be larger
than 3 seconds (from the points where it receives the request)".

Although combined functional and non-functional requirements
are important for Web service composition, currently there is no
integrated tool support for these two classes of requirements. To
facilitate the checking and improvement of functional and non-
functional aspects of Web service composition, we have developed
a toolkit called VeriWS. VeriWS is a tool designed to verify Web
service composition for combined functional and non-functional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591070

564



BPEL

Service
Functional / Non-Functional

Properties Editor

Verifier

LTL

Verifier

Reachability

Verifier

Deadlock-freeness

Verifier

Internal

Processes

Collection
Simulator

BA

Cost

Aggregator

Aggregator

Model Checker

Response Time

Aggregator

Properties

Collection

Availability

Aggregator

BPEL Parser
Assertion Parser and Buchi Automata

Translator
Parser

Figure 1: VeriWS Architecture

requirements, based on the QoS of participated component services.
A counterexample will be provided when the violation of a require-
ment is detected. It also integrates with a simulator component to
provide the simulation on behaviors of the composite service, as
well as, to replay the counterexample that is reported.

In the following, we present the main features of VeriWS.

• It supports verification on different kinds of combined func-
tional and non-functional properties of Web service composi-
tion, i.e., linear temporal logic (LTL) properties, reachability
properties, and deadlock-freeness properties.

• It supports the simulation of Web service composition models
and provides the counterexample in WS-BPEL, so that devel-
opers can easily locate the origin of the bug and subsequently
fix it.

• It is easy to use for Web service modeling, testing and verifi-
cation.

Our initial experiment was illustrated in [3], it has demonstrated
the effectiveness of our method. To our knowledge, VeriWS is
the first tool to provide verification on combined functional and
non-functional requirements of Web service composition.

2. VERIWS

2.1 Architecture and Implementation

VeriWS is a self-contained toolkit that provides the state-of-the-
art verifier for combined functional and non-functional require-
ments for Web service composition specific to WS-BPEL. Given
WS-BPEL programs with QoS values for each component service,
VeriWS enables integrated verification of both functional and non-
functional requirements. Web service composition is verified di-
rectly based on its operational semantics. We adopt the formal
operational semantics of WS-BPEL described in [6]. With the oper-
ational semantics, a WS-BPEL program can be treated as a transition
system, which is subject to model checking. When the verification is
violated, a counterexample in WS-BPEL will be provided to make
developers easier to find and correct problems.

VeriWS is implemented in C# and uses a modular architecture.
It provides powerful editor, simulator, and verifier. Figure 1 shows
the architecture of VeriWS. To verify the composite service using
WS-BPEL, a user first inputs the WS-BPEL service description and
combined requirements to be verified using the editor. The editor
is implemented using the text editor component of Sharp Develop

Table 1: Aggregation Function

QoS Attribute Sequential Parallel Loop Conditional

Response Time
n∑

i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

framework1, which supports multi-documents environment and is
customizable in terms of syntax highlighting, code folding, etc.

Subsequently, the WS-BPEL service description and the com-
bined requirements are parsed into processes collection and prop-
erties collection respectively. The verifier is then used to check the
WS-BPEL service against the combined requirements. The verifier
checks the combined requirements based on the aggregated QoS
values obtained from the aggregators. There are three kinds of veri-
fiers, i.e., LTL verifier, reachability verifier and deadlock-freeness
verifier, which are designed to check LTL properties, reachability
and deadlock-freeness properties respectively. VeriWS offers exten-
sible software architecture, such that new verifiers and aggregators
could be plugged in easily.

The simulator can be used to visualize the behavior of a WS-
BPEL service and the combined requirements. The simulator can
also be used to replay the counterexample returned by the verifier.
We illustrate the details of verifier, aggregator and simulator in the
following.

2.1.1 Aggregator
Different aggregators are used to aggregate different QoS based

on the their aggregation functions. Table 1 shows the aggregation
functions that response time aggregator used for different composi-
tional structures. Response time aggregator sums up the response
time of component services in sequential structure, i.e., the response
time of the composite service is calculated by summing up the re-
sponse time of the n participated component services. The response
time of the composite service composed by parallel structure is
decided by the maximum response time among the n participated
component services. As for loop structure, the response time of the
composite service is obtained by summing up the response time
of the participating component service for k times, where k is the
number of maximum iteration of the loop. While for the conditional
composition, the response time of the composite service is the maxi-
mum response time of n participating component services since at
the design phase it is unknown which guard will be satisfied. Cost
and availability aggregators work similarly, where their aggregation
functions could be found in [3].

2.1.2 Verifier
The verifier model checks combined functional and non-functional

requirements. If a counterexample is found, it can be replayed using
the simulator. Several verifiers are implemented to cater for different
kinds of combined requirements. There are three categories of prop-
erties that are currently supported by the verifier: deadlock-freeness,
reachability, and LTL. The verifier integrates the aggregated QoS
values from the aggregators, into the transition system that repre-
sents the WS-BPEL process using approaches in [3], and offers
verification for the following properties:

LTL Property. An LTL property checks whether the property
specified in LTL holds. To verify the LTL formulae, we adopt the
automata-based on-the-fly verification algorithm [15], i.e., by firstly
translating a formula to a Büchi automaton (BA) and then checking
emptiness of the product of the system and the automaton.

1http://www.icsharpcode.net/OpenSource/SD/
Default.aspx

565



Table 2: Web Service Verification Tools

Tool Requirement Input Intermediate

WSEngineer [7] Functional BPEL FSP
WSAT [9] Functional BPEL GFSA

VERBUS [2] Functional BPEL Promela
WOMBAT [13] Functional BPEL Petri nets

AgFlow [20] Non-functional Statecharts –
VeriWS Combined BPEL –

Reachability Property. A reachability property asks whether
there exists a state that fulfills a given property. The properties
are specified using the constraint on a set of verification variables.
The verification variables are manipulated by the WS-BPEL service
using the extended WS-BPEL attributes [14]. To verify reachability,
Depth First Search (DFS) or Breath First Search (BFS) is applied
on the transition system of the WS-BPEL process to search for a
state that fulfilled the given property.

Deadlock-freeness. Checking deadlock-freeness is to check
whether a WS-BPEL service contains a deadlock. The WS-BPEL
service starts with receiving the message from the user, and ends
with reply the user with the desired result. A state is deadlocked if
it does not have any outgoing transitions, and the user has not yet
been replied. To verify deadlock-freeness, standard graph traversal
algorithm (e.g., DFS or BFS) is applied on the transition system of
the WS-BPEL process to search for a deadlock state.

2.1.3 Simulator
The simulator could be used to visualize the behaviors of a WS-

BPEL service in the form of a transition system. The simulator
provides various simulation functions for users, e.g., complete gen-
eration of the transition system – where the user could generate
entire state space of the WS-BPEL program; interactive exploration
of the transition system – where the user could view the subset of the
transition system by exploring on the actions of their interest; ran-
dom simulation - where an example trace is automatically generated
for the user. This allows users to have an in-depth understanding
on the behavior of the WS-BPEL service through the simulation
interface. The simulator is also used to visualize BA generated from
the negation of a LTL property. In addition, the simulator could also
allow the user to replay the counterexample returned by the verifier,
when a property is violated, in order to aid the user on finding out
the origin of the problem.

2.2 Comparison with Existing Tools

Table 2 shows the comparison of VeriWS with existing tools.
Existing tools can either verify only functional requirements or non-
functional requirements as shown in the Requirement column. Ex-
isting functional verification tools (WSEngineer, WSAT, VERBUS,
WOMBAT) takes WS-BPEL as input, and translate WS-BPEL into
an intermediate formal language (e.g., FSP, Petri nets) and use veri-
fication techniques and tools for the intermediate formal language
(e.g., LTSA2 tool is used for FSP) for verification. Their counterex-
amples are in their respective intermediate formal language (e.g.,
counterexample of WSEngineer is in FSP). Existing non-functional
verification tool (AgFlow) requires the user to provide correspond-
ing statecharts [10] as input to provide the non-functional analysis
for the composite service.

In [18], we have developed the tool on verification of computation
orchestration language, nevertheless the tool is only focused on
2www.doc.ic.ac.uk/ltsa/

<process xmlns:bpel="http://VeriWS/" ... >
...
<sequence>
<receive ... />
<if>
<condition>$CustomerType = ’Corporate’</condition>
<invoke partnerLink="CBS" ... />
<else>
<invoke partnerLink="PBS" ... />

</else>
</if>
<flow>
<invoke partnerLink="MS" ... />
<invoke partnerLink="SS" ... />

</flow>
<reply ... />

</sequence>
</process>

Figure 2: WS-BPEL Description for CPS

functional requirement of Orc language [11]. In [17, 12], we have
developed tools in analyzing the time requirement, which are only
focused on the non-functional requirement.

Compared to existing tools, VeriWS is distinguished by several
features. First, VeriWS supports efficient combined functional and
non-functional verification which could not be achieved by any ex-
isting tools. In addition, for non-functional verification, AgFlow
only provides for the non-functional analysis for the composite ser-
vice as a whole, e.g., “the CPS will always be response within 3
seconds". In contrast, VeriWS could support more “fine-grained"
non-functional requirement such as “when invoking the shipping
service, CPS will not be delayed for more than 3 seconds". Second,
VeriWS does not translate WS-BPEL to an intermediate formal lan-
guage; therefore it could provide the counterexample in WS-BPEL
language. Another advantage is that, this also provides a more
natural handling of data semantics in XML, where formalism like
XPath3 is normally used to retrieve particular data elements in an
XML document. WSAT is the only existing tool that supports on the
XML data manipulation, and to support a single line of XPath oper-
ation, it requires to translate to 56 lines of Promela codes (excluding
the comments) [8]. The translated code is hardly comprehensible.
While in our approach, we could directly manipulate the XML data
based on the semantics of XPath operation. This will in turn provide
the user with a more pleasant experience to understand the behaviors
of WS-BPEL services using the simulation tool.

3. DEMONSTRATION

The section is to complement with the video demonstration to
illustrate the models and requirements to be verified. We use the
Computer Purchasing Service (CPS), a service that allows users to
purchase a computer online using credit cards.

3.1 Computer Purchasing Service (CPS)
The WS-BPEL program of CPS is described in Figure 2. In the

following we illustrate the workflow of CPS. Upon receiving the
request from the customer with his personal information and the
computer he wishes to buy, if the type of the customer is corpo-
rate, Corporate Billing Service (CBS) is invoked synchronously
(i.e., waiting for the reply from CBS before moving on) to bill the
customer, otherwise, Personal Billing Service (PBS) is invoked syn-
chronously to bill the customer. Manufacture Service (MS) and
Shipping Service (SS) are triggered concurrently once receiving the
billing confirmation message. MS is invoked synchronously to in-

3www.w3.org/TR/xpath/

566



form the manufacture department with the purchased computer. SS
is invoked synchronously to arrange the shipment for the customer.
Finally, the purchasing result will be replied to the customer.

3.2 Requirements for Verification
We provide verification on five requirements, which are listed as

follows:

1. CPS |= deadlockfree

2. CPS |= � (ReplyUser⇒ ResponseTime ≤ 6)

3. CPS |= � Availability ≥ 0.95

4. CPS |= � Cost≤5

5. CPS |= reach (invokeCBS ∧ Cost<1)

The first property is the deadlock-freeness property which is used to
check whether CPS is deadlock-free. The second property (i.e., �
(ReplyUser⇒ ResponseTime ≤ 6)) is an LTL property, which is
to check whether the CPS always replies to users within 6 seconds.
The third property (i.e., � Availability ≥ 0.95 ) is an LTL property
which is used to check whether the availability of CPS is always
greater or equals to 0.95. The fourth property (i.e., � Cost≤5) is an
LTL property which is used to check whether the cost incurred by
CPS is always less than or equal to 5 dollars. The fifth property is a
reachability property (reach invokeCBS ∧ Cost<1) is a reachability
property, which is used to find out whether there is a possibility that
the accumulated cost is less than 1 dollar at the time when CBS is
invoked. Both the second and fifth properties check the combined
functional and non-functional requirements.

4. CONCLUSION AND FUTURE WORK
For Web service composition, both functional and non-functional

requirements are important. Therefore, it is crucial to verify func-
tional and non-functional requirements of composite services at
design time so that it could detect the problem before deployment.
With VeriWS, we provide a tool to check the satisfiability of com-
bined functional and non-functional requirements of composite ser-
vices directly based on their semantics.

As future work, we are going to enhance VeriWS by applying state
reduction techniques, and provide visualization for the workflow
structure of the WS-BPEL model. In addition, we also plan to
integrate VeriWS toolkit with other WS-BPEL IDEs, such as Eclipse
BPEL Designer [1], to provide the integrated verification for these
IDEs.

5. ACKNOWLEDGMENTS
This work is supported by “Formal Verification on Cloud" project

under Grant No: M4081155.020 and “Verification of Security Pro-
tocol Implementations" project under Grant No: M4080996.020.

6. REFERENCES
[1] Eclipse bpel designer project.

http://www.eclipse.org/bpel/.
[2] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos. Formal

verification of BPEL4WS business collaborations. In EC-Web,
pages 76–85, 2004.

[3] M. Chen, T. H. Tan, J. Sun, Y. Liu, J. Pang, and X. Li.
Verification of functional and non-functional requirements of
web service composition. In ICFEM, pages 313–328, 2013.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, 2000.

[5] O. W. S. B. P. E. L. W. T. Committee. Web Services Business
Process Execution Language Version 2.0.
http://www.oasis-open.org/specs/#wsbpelv2.0, Apr 2007.

[6] H. Foster. A rigorous approach to engineering web service
compositions. PhD thesis, Citeseer, 2006.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ws-engineer:
A model-based approach to engineering web service
compositions and choreography. In Test and Analysis of Web
Services, pages 87–119. 2007.

[8] X. Fu, T. Bultan, and J. Su. Model checking xml manipulating
software. In ISSTA, pages 252–262, 2004.

[9] X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal analysis
of web services. In CAV, pages 510–514, 2004.

[10] D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293–333, 1996.

[11] D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The orc
programming language. In FMOODS/FORTE, pages 1–25,
2009.

[12] Y. Li, T. H. Tan, and M. Chechik. Management of time
requirements in component-based systems. In FM, 2014. to
appear.

[13] A. Martens and S. Moser. Diagnosing SCA components using
wombat. In Business Process Management, pages 378–388,
2006.

[14] OASIS Web Services Business Process Execution Language
(WSBPEL) Technical Committee. Web services business
process execution language version 2.0, Apr. 2007.

[15] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible
verification under fairness. In CAV, pages 709–714, 2009.

[16] J. Sun, Y. Liu, J. S. Dong, G. Pu, and T. H. Tan. Model-based
methods for linking web service choreography and
orchestration. In APSEC, pages 166–175, 2010.

[17] T. H. Tan, É. André, J. Sun, Y. Liu, J. S. Dong, and M. Chen.
Dynamic synthesis of local time requirement for service
composition. In ICSE, pages 542–551, 2013.

[18] T. H. Tan, Y. Liu, J. Sun, and J. S. Dong. Verification of
orchestration systems using compositional partial order
reduction. In Formal Methods and Software Engineering,
volume 6991 of Lecture Notes in Computer Science, pages
98–114, 2011.

[19] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N.
Bairavasundaram. How do fixes become bugs? In SIGSOFT
FSE, pages 26–36, 2011.

[20] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for web
services composition. IEEE Trans. Software Eng.,
30(5):311–327, 2004.

567


