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Service composition aims at achieving a business goal by composing existing service-based applications or
components. The response time of a service is crucial especially in time critical business environments, which
is often stated as a clause in service level agreements between service providers and service users. To meet
the guaranteed response time requirement of a composite service, it is important to select a feasible set of
component services such that their response time will collectively satisfy the response time requirement of
the composite service. In this work, we propose a fully automated approach to synthesize the response time
requirement of component services, in the form of a constraint on the local response times. The synthesized
requirement will guarantee the satisfaction of the global response time requirement, statically or dynami-
cally. We implemented our work into a tool SELAMAT, and performed several experiments to evaluate the
validity of our approach.

General Terms: Web Service Composition, Parameter Synthesis, Labeled Transition System

1. INTRODUCTION AND MOTIVATION

Service-oriented architecture is a paradigm where building blocks are used as ser-
vices for software applications. Services encapsulate their functionalities, information,
and make them available through a set of operations accessible over a network infras-
tructure using standards like SOAP [Gudgin et al. 2007] and WSDL [Chinnici et al.
2007]. To make use of a set of services to achieve a business goal, service composition
languages such as BPEL (Business Process Execution Language) [Alves et al. 2007]
have been proposed. A service that is composed by other services is called a compos-
ite service, and services that the composite service makes use of are called component
services.

The requirement on the service response time is often an important clause in service-
level agreements (SLAs) especially in business where timing is critical. An SLA is
a contract between service consumers and service providers specifying the expected
quality of service (QoS) level. Henceforth, we denote the response time requirement
of composite services as global time requirement, and the set of constraints on the re-
sponse times of the component services as local time requirement. The response time
of a composite service is highly dependent on that of each component service. It is
therefore crucial to derive local time requirements (i. e., requirements for the compo-
nent services) from the global time requirement so that it will help in the selection of
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Fig. 1: General approach

component services when building a composite service while satisfying the response
time requirement.

Consider an example of a stock indices service, which has an SLA with the sub-
scribed users requiring that the stock indices shall be returned within three seconds
upon request. The stock indices service makes use of several component services, in-
cluding a paid service, for requesting stock indices. The stock indices service provider
would be interested in knowing the local time requirement of the component services,
while satisfying the global response time requirement. To avoid discarding any service
candidates that might be part of a feasible composition, the synthesized local time re-
quirement needs to be as weak as possible, i. e., to contain as many values for local
time requirements as possible. This is crucial as having a faster service might incur a
higher cost.

1.1. Contribution
In this paper, we present a fully automated technique to synthesize the local time
requirement in composite services. Our approach performs an analysis of the compos-
ite service’s behavior, using techniques inspired by parameter synthesis for real-time
systems. Our synthesis approach does not only avoid bad scenarios in the service com-
position, but also guarantees the fulfillment of the global time requirement.

We use as a formalism BPEL, which is a de-facto standard for service composition.
BPEL supports control flow structures that involve complex timing constructs (e. g.,
<pick> control structure) and concurrent execution of activities (e. g., <flow> control
structure). Due to the non-determinism in both time and control flow, it is unknown
which execution path will be executed at runtime. Such a combination of timing con-
structs, concurrent calls to external services, and complex control structures, makes it
a challenge to synthesize the local time requirement.
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Fig. 1 illustrates the main steps of our approach for synthesizing local time re-
quirements, described in the following. The required inputs are the specification of
the composite service CS, and its global time requirement. The output will be local
time requirements (at design time, and then at runtime) given in the form of a linear
constraint.

First contribution. We first propose a semantics for BPEL composite services aug-
mented with timing parameters, i. e., constants the value of which is not known at
design time; this symbolic semantics is given the form of a labeled transition system
(LTS).

Second contribution. Based on the LTS resulting from the input composite service,
we propose an approach to synthesize local time requirements of component services,
represented as a (linear) constraint, which we refer to as the local time constraint.
During the design phase of a composite service, the local time constraint is synthesized
based on all possible execution paths, since it is unknown which execution path will
be executed at runtime (this will depend in the dynamic behavior of the system, and in
particular the evaluation of guards). The local time constraint of a composite service
that is synthesized during the design time is called the static local time constraint
(hereafter sLTC).

The synthesized sLTC has several advantages. Firstly, it allows the selection of fea-
sible services when creating a new composite service, from a large pool of services
with similar functionalities but different local response times. Secondly, service de-
signers can use the synthesized result to avoid over-approximations on the local re-
sponse times, which may lead the service provider to purchase a service at a higher
cost, while a service at a lower cost with a slower response time may be sufficient to
guarantee the global time requirement. Thirdly, the local time requirements serve as
a safe guideline when component services need to be substituted or new services need
to be introduced.

Third contribution. Due to the highly evolving and dynamic environment the com-
posite service is running in, the design time assumptions for Web service composition,
even if they are initially accurate, may later change at runtime. For example, the ex-
ecution time of a component service could violate the sLTC due to reasons such as
network congestion. Nevertheless, this does not necessarily imply that the composite
service will not satisfy the global time requirement. Indeed, the sLTC is synthesized
based on all possible execution paths at design time, whereas only one path will be ex-
ecuted at runtime. At runtime, some of the execution paths can be eliminated. There-
fore, we can use the runtime information to refine the sLTC to make it weaker – which
results in a more relaxed constraint on the response times of the component services.
We refer to the sLTC refined at runtime as a refined local time constraint (hereafter
rLTC). The rLTC is then used to decide whether the current composite service can still
satisfy the global time requirement.

Fourth contribution. We implemented our algorithms into a tool SELAMAT. We then
conducted experiments on several case studies, that show that the rLTC can indeed
help to improve the sLTC. In addition, we show that the runtime adaptation does not
incur much overhead in practice.

About this manuscript. This manuscript is a substantially improved version of [Tan
et al. 2013]. In [Tan et al. 2013], we presented a method supporting the synthesis of
sLTC from the global time requirement. We provided an extra analysis on the BPEL
activities, and classified them as “or-activities” or “and-activities”. We then extended
labeled transition systems (LTS) with and-states and or-states, which we called and/or

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 T. H. Tan, É. André, M. M. Chen, J. Sun, Y. Liu, J. S. Dong and L. Yuan

LTS (AOLTS), for synthesizing the local time requirement. The main contribution of
this manuscript is the introduction of rLTC to verify whether the service composition
could satisfy the global time requirement at runtime. Additionally, this manuscript
also improves the approach for synthesizing sLTC presented in [Tan et al. 2013], by
removing the and/or states in the LTS. This results in a more comprehensible seman-
tics model and more straightforward synthesis algorithms for local time requirement.
We also implemented our work in SELAMAT and conducted extensive evaluations, that
were not present in [Tan et al. 2013].

1.2. Outline
The rest of this paper is structured as follows. Section 2 provides the necessary defi-
nitions and terminologies. Section 3 introduces a timed BPEL running example. Sec-
tion 4 introduces our approach to analyze the BPEL process. Section 5 presents the
synthesis algorithms for sLTC. Section 6 introduces rLTC, and its usage for runtime
adaptation of a service composition. Section 7 presents our implementation and eval-
uates our approach using four case studies. Section 8 reviews related works. Finally,
Section 9 concludes the paper, and outlines future work.

2. A FORMAL MODEL FOR PARAMETRIC COMPOSITE SERVICES
In this section, we introduce the concepts used throughout the paper.

2.1. Variables, Clocks, Parameters, and Constraints

We assume AllVars to be the universal set of finite-domain variables. Given a finite
set V ⊂ AllVars, a variable valuation for V is a function assigning to each variable
a value in its domain. We denote by Valuations(V) the set of all variable valuations
of V. Given a variable y ∈ V and a variable valuation v ∈ Valuations(V), we denote by
v(y) = ⊥ the fact that variable y is uninitialized in valuation v.

The clocks, parameters and constraints that we use in this work are similar to the
ones used in the formalisms of timed automata [Alur and Dill 1994], parametric timed
automata [Alur et al. 1993] and stateful timed CSP [Sun et al. 2013]. A clock is a
variable with values in the set of non-negative real numbers R≥0; a clock is used here
to record the time passing of activities. All clocks are progressing at the same rate (just
as in timed automata [Alur and Dill 1994]). Let AllClocks denote the universal set of
clocks, disjoint with AllVars. Let X = {x1, . . . , xH} ⊂ AllClocks (for some integer H)
be a finite set of clocks. A clock valuation is a function w : X → R≥0, that assigns a
non-negative real value to each clock.

A parameter is an unknown constant, used here to represent the unknown response
time of a component service. Let AllParams denote the universal set of parameters, dis-
joint with AllClocks and AllVars. Given a finite set of parameters U = {u1, . . . ,um} ⊂
AllParams (for some integer m), a parameter valuation is a function π : U → Q≥0
assigning a non-negative rational value to each parameter.

A linear term over X∪U is an expression of the form
∑

1≤i≤N αizi +d for some N ∈ N,
with zi ∈ X ∪U, αi ∈ Q≥0 for 1 ≤ i ≤ N, and d ∈ Q≥0. We denote by LX∪U the set of all
linear terms over X and U. Similarly, we denote by LX (resp. LU) the set of all linear
terms over X (resp. U). An inequality over X and U is e ≺ e′ with ≺ ∈ {<,≤}, where e,
e′ ∈ LX∪U .

A convex constraint (or constraint) is a conjunction of inequalities. We denote by CX∪U
the set of all convex constraints over X and U. Similarly, we denote by CX (resp. CU) the
set of all convex constraints over X (resp. U). A non-necessarily convex constraint (or
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NNCC) is a conjunction of disjunction of inequalities1; NNCCs are used in this paper
to represent the synthesized local time constraint obtained via the methods proposed
in this paper. Note that the negation of an inequality remains an inequality; however,
the negation of a convex constraint becomes (in the general case) an NNCC. We denote
by NCU the set of all NNCCs over U.

Henceforth, we use w (resp. π) to denote a clock (resp. parameter) valuation. Let
C ∈ NCU , C[π] denotes the valuation of C with π, i. e., the constraint over X obtained by
replacing each u ∈ U with π(u) in C. Note that C[π] can be written as C ∧

∧
ui∈U ui = πi.

We say that π satisfies C, denoted by π |= C, if C[π] evaluates to true. C is empty
if there does not exist a parameter valuation π such that π |= C; otherwise C is non-
empty. We define C↑ as the time elapsing of C, i. e., the constraint over X and U obtained
from C by delaying all clocks of an arbitrary amount of time d. Given two constraints
C1,C2 ∈ NCU , we say that C2 is weaker (or more relaxed) than C1, denoted by C1 ⊆ C2,
if ∀π : π |= C1 ⇒ π |= C2. Similarly, C2 is strictly weaker (or strictly more relaxed) than
C1, denoted by C1 ⊂ C2, if C1 ⊆ C2 and C1 6= C2.

Given C ∈ CX∪U and X ′ ⊆ X, we denote by pruneX′(C) the constraint in CX∪U that
is obtained from C by pruning the clocks in X ′; this can be achieved using variable
elimination techniques such as Fourier-Motzkin (see, e. g., [Schrijver 1986]). More gen-
erally, Given C ∈ CX∪U , we denote by C↓U the projection of constraint C onto U, i. e.,
the constraint obtained from C by pruning all clock variables. Again, such projections
can be computed using Fourier-Motzkin elimination.

2.2. Syntax of Composite Service Processes
BPEL [Alves et al. 2007] is an industrial standard for implementing composition of ex-
isting Web services by specifying an executable workflow using predefined activities.
In this work, we assume the composite service is specified using the BPEL language.
Basic BPEL activities that communicate with component Web services are <receive>,
<invoke>, and <reply>, which are used to receive messages, invoke an operation of
component Web services and return values respectively. We denote them as commu-
nication activities. The control flow of the service is defined using structural activities
such as <flow>, <sequence>, <pick>, <if>, etc.

A composite service CS makes use of a finite number of component services to ac-
complish a task. Let E = {S1, . . . ,Sn} be the set of all component services that are
used by CS. In this work, we assume that the response time of a composite service is
based on the time spent on individual communication activities, and the time incurred
by internal operations of the composite service is negligible.2

Composite services are expressed using processes. We define a formal syntax defini-
tion in Fig. 2, where S is a component service, P and Q are composite service processes,
b is a Boolean expression, and ai ∈ Q>0 are positive rational numbers, for 1 ≤ i ≤ k.

Let us describe the BPEL syntax notations below:

— rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S,
respectively;

— sInv(S) (resp. aInv(S)) denotes the synchronous (resp. asynchronous) invocation of
a component service S;

— P ||| Q denotes the concurrent composition of BPEL activities P and Q;
— P ; Q denotes the sequential composition of BPEL activities P and Q;

1Without loss of generality, we assume here that all NNCCs are in conjunctive normal form (CNF).
2We discuss the time incurred for internal operations in Section 6.6.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 T. H. Tan, É. André, M. M. Chen, J. Sun, Y. Liu, J. S. Dong and L. Yuan

P =̂ rec(S) receive activity
| reply(S) reply activity
| sInv(S) synchronous invocation
| aInv(S) asynchronous invocation
| P ||| Q concurrent activity
| P ; Q sequential activity
| PCbBQ conditional activity

| pick(
n
]

i=1
Si⇒Pi,

k
]

i=1
alrm(ai)⇒Qi) pick activity

Fig. 2: Syntax of composite service processes

— PCbBQ denotes the conditional composition, where b is a guard condition on the
process variables. If b evaluates to true, BPEL activity P is executed, otherwise
activity Q is executed;

— pick(
n
]

i=1
Si⇒Pi,

k
]

i=1
alrm(ai)⇒Qi) denotes the BPEL pick composition, which con-

tains two types of activities: onMessage activity and onAlarm activity. An onMessage
activity Si⇒Pi is activated when the message from service Si arrives and BPEL ac-
tivity Pi is subsequently executed; an onAlarm activity alrm(ai)⇒Qi is activated at
ai seconds, and BPEL activity Qi is subsequently executed. The pick activity con-
tains n onMessage activities and k onAlarm activities. Exactly one activity from
these n + k activities will be executed. If multiple activities activate at the same
time, one of the activities will be chosen non-deterministically for execution. Given
a pick activity P, we use P.onMessage and P.onAlarm to denote the onMessage and
onAlarm branches of P respectively.

A structural activity is an activity that contains other activities. Concurrent, sequen-
tial, conditional, and pick activities are examples of structural activities. An activity
that does not contain other activities is called an atomic activity, which includes re-
ceive, reply, synchronous invocation and asynchronous invocation activities. We denote
by Pnp the set of all possible (non-parametric) composite service processes.

Note that the communication activities can implicitly make use of variables for pass-
ing information. For example, let S be a component service that calculates the stock
indices for a particular date. For synchronous invocation sInv(S), it requires an input
variable vi that specifies the date information, and an output variable vo to hold the
return from sInv(S). To keep the notations concise, we abstract the usage and assign-
ment of variables for communication activities.

We introduce below an important assumption of this work:

ASSUMPTION 1. All loops have a bound on the number of iterations and on the
execution time.

This assumption is necessary to ensure termination of our approach. We believe it is
reasonable in practice (see Section 6.6 for a discussion).

2.3. Parametric Composite Service Models
Let us now formally define composite service models and parametric composite service
models.

Definition 2.1 (Composite Service Model). A composite service model CS is a tuple
(V, v0,N0), where V ⊂ AllVars is a finite set of variables, v0 ∈ Valuations(V) is an initial
valuation that maps each variable to its initial value, and N0 ∈ Pnp is a composite
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service process (defined according to the grammar of Fig. 2) making use of the variables
in V.

We now extend the definitions of services, composite service processes and composite
service model to the parametric case. First, a parametric service is a service i, the re-
sponse time of which is now a parameter ui ∈ U, instead of a rational-valued constant.
Then, a parametric composite service process is a service process defined according
to the grammar of Fig. 2, where services (“S” in Fig. 2) are now parametric services.
We denote by P the set of all possible parametric composite service processes. Finally,
parametric composite service models are defined similarly to composite service mod-
els, except that the composite service processes are now parametric composite service
processes.

Definition 2.2 (Parametric Composite Service Model). A parametric composite ser-
vice model CS is a tuple (V, v0,U,P0,C0), where V ⊂ AllVars is a finite set of variables;
v0 ∈ Valuations(V) is an initial valuation that maps each variable to its initial value;
U ⊂ AllParams is a finite set of parameters; P0 ∈ P is a parametric composite service
process making use of the variables in V and C0 ∈ CU is the initial (convex) parametric
constraint.

Process and model valuation. Given a parametric composite service process P with
a parameter set U = {u1, . . . ,um} and given a parameter valuation (π(u1), . . . , π(um)),
P[π] denotes the valuation of P with π, i. e., the process where each occurrence of a
parameter ui has been replaced with its valuation π(ui).

Given a parametric composite service model CS with a parameter set U =
{u1, . . . ,um}, and given a parameter valuation (π(u1), . . . , π(um)), CS[π] denotes the
valuation of CS with π, i. e., the model (V, v0,U,P0,C), where C is C0 ∧

∧m
i=1(ui =

π(ui)). Note that CS[π] can be seen as a non-parametric service model (V, v0,P0[π]).

2.4. Bad Activities
Given a BPEL service CS, we define a bad activity as an atomic activity such that its
execution means that the composite service CS has violated the global time require-
ment. To distinguish bad activities, we allow the user to annotate a BPEL activity
A as a bad activity. The annotation can be achieved, for example, by using extension
attribute of BPEL activities.

3. A BPEL EXAMPLE WITH TIMED REQUIREMENTS
Let us introduce a Stock Market Indices Service (SMIS) that will be used as a running
example. SMIS is a paid service and its goal is to provide updated stock indices to the
subscribed users. It provides a service level agreement (SLA) to the subscribed users
stating that it always responds within three seconds upon request.

SMIS has three component Web services: a database service (DS), a free news feed
service (FS) and a paid news feed service (PS). The strategy of the SMIS is calling the
free service FS before calling the paid service PS in order to minimize the cost. Upon
returning the result to the user, the SMIS also stores the latest results in an external
database service provided by DS (storage of the results is omitted here). The workflow
of the SMIS is sketched in Fig. 3 in the form of a tree. When a request is received
from a subscribed customer (Receive User), it synchronously invokes (i. e., invoke and
wait for reply) the database service (Sync. Invoke DS) to request stock indices stored in
the past minute. Upon receiving the response from DS, the process is followed by an
<if> branch (denoted by ). If the indices are available (Indices exist), then they are
returned to the user (Reply indices). Otherwise, FS is invoked asynchronously (i. e.,
the system moves on after the invocation without waiting for the reply). A <pick>

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 T. H. Tan, É. André, M. M. Chen, J. Sun, Y. Liu, J. S. Dong and L. Yuan

Receive User

Sync. Invoke DS

X Reply indices ASync. In-
voke FS

OnMessage FS OnAlarm 1 second

X Reply indices ASync. Invoke PS

OnMessage PS OnAlarm 1 second

X Reply indices × Reply ’Failure’

Indices exist Indices do not exist

Fig. 3: Stock Market Indices Service

construct (denoted by ) is used here to await an incoming response (<onMessage>)
from previous asynchronous invocation and timeout (<onAlarm>) if necessary. If the
response from FS (OnMessage FS) is received within one second, then the result is re-
turned to the user (Reply indices). Otherwise, the timeout occurs (OnAlarm 1 second),
and SMIS stops waiting for the result from FS and calls PS instead (ASync. Invoke PS).
Similarly to FS, the result from PS is returned to the user, if the response from PS is
received within one second. Otherwise, it notifies the user regarding the failure of get-
ting stock indices (Reply ‘Failure’). The states marked with a X (resp. ×) represent
desired (resp. undesired) end states.

The global time requirement for SMIS is that SMIS should respond within three sec-
onds upon request. It is of particular interest to know the local time requirements for
services PS, FS, and DS, so as to fulfill the global time requirement. This information
could also help to choose a paid service PS which is both cheap and responds quickly
enough.

In this example, the bad activity is the reply activity that is triggered once after the
component service PS fails to respond within one second.

4. A FORMAL SEMANTICS FOR PARAMETRIC COMPOSITE SERVICES
In this section, we provide our parametric composite service model with a formal se-
mantics, given in the form of a labeled transition system (LTS). The semantics we
use is inspired by the one proposed for (parametric) stateful timed Communicating
Sequential Processes (CSP) [Sun et al. 2013; André et al. 2014], that makes use of
implicit clocks.

We first recall LTSs (Section 4.1) and define symbolic states (Section 4.2). Following
that, we define implicit clocks and the associated functions, i. e., activation and idling
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(Section 4.3). We then introduce our formal semantics (Section 4.4), and apply it to an
example (Section 4.6).

4.1. Labeled Transition Systems
Definition 4.1 (Labeled Transition System). A labeled transition system (LTS) is a

tuple LTS = (Q, s0,Σ, δ), where

— Q is a set of states;
— s0 ∈ Q is the initial state;
— Σ is a set of actions;
— δ ⊆ Q× Σ×Q is a transition relation.

Given LTS = (Q, s0,Σ, δ), a state s ∈ Q is a terminal state if there does not exist a
state s′ ∈ Q and an action a ∈ Σ such that (s,a, s′) ∈ δ; otherwise, s is said to be a non-
terminal state. There is a run from a state s to state s′, where s, s′ ∈ Q, if there exists
an alternating sequence of states and actions 〈s1,a1, s2, . . . ,an−1, sn〉, where si ∈ Q for
1 ≤ i ≤ n, ai ∈ Σ for 1 ≤ i ≤ n−1, s1 = s, sn = s′, and ∀ i ∈ {1, . . . ,n−1}, (si,ai, si+1) ∈ δ.
A complete run is a run that starts in the initial state s0 and ends in a terminal state.
Given a state s ∈ Q, we use succ(s) to denote the set of states reachable in one step
from s; formally, succ(s) = {s′ | ∃a ∈ Σ : s′ ∈ Q ∧ (s,a, s′) ∈ δ}. Then, succ∗(s) denotes
the set of states reachable in one or more steps from s; formally, succ∗(s) = {s′ | there
is a run from s to s′}.

Below, we introduce the notion of LTS starting from a state s as the LTS containing
s and all its successor states and transitions.

Definition 4.2 (sub-LTS). Let LTS = (Q, s0,Σ, δ) be an LTS, and let s be a state of
Q. The sub-LTS of LTS starting from s is (Q′, s,Σ′, δ′), where i) Q′ ⊆ Q is the set of
states reachable from s ∈ Q in LTS (i. e., succ∗(s) in LTS); ii) δ′ ⊆ δ is the transition
relation satisfying the following condition: s1

a
↪→ s2 ∈ δ′ if s1, s2 ∈ Q′ and s1

a
↪→ s2 ∈ δ;

and iii) Σ′ ⊆ Σ is the set of all actions used in δ′, i. e., {a | ∃ s1, s2 ∈ Q′ : s1
a
↪→ s2 ∈ δ′}

4.2. Symbolic States
Let us define the notion of (symbolic) state of a parametric composite service model.

Definition 4.3. [State] Given a parametric composite service model CS =
(V, v0,U,P0,C0), a (symbolic) state of CS is a tuple s = (v,P,C,D), where v ∈
Valuations(V) is a valuation of the variables, P is a composite service process, C is
a constraint over CX∪U , and D ∈ LU is the (parametric) elapsed time from the initial
state s0 to state s, excluding the idling time in state s.

Given a state s = (v,P,C,D), we use the notation s.v to denote the component v of s,
and similarly for s.P, s.C and s.D. When a parametric composite service model CS has
no variable, we denote each state s ∈ Q as (P,C,D) for the sake of brevity. Two states
s = (v,P,C,D) and s′ = (v′,P′,C′,D′) are equal, if v = v′, P = P′, C = C′, and D = D′.

4.3. Implicit Clocks
In order to provide parametric composite service models with a with real-time se-
mantics, we use clocks to record the elapsing of time. Clocks are used to record the
time elapsing in several formalisms, in particular in timed automata (TAs) [Alur and
Dill 1994]. In TAs, the clocks are defined as part of the models and state space. It
is known that the state space of the system may grow exponentially with the num-
ber of clocks and that the fewer clocks, the more efficient real-time model checking
is [Bengtsson and Yi 2003]. In TAs, it is then possible to dynamically reduce the num-
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Act(A(S), x) = A(S)x A1
Act(mpick, x) = mpickx A2
Act(A(S)x′ , x) = A(S)x′ A3
Act(mpickx′ , x) = mpickx′ A4
Act(P⊕Q, x) = Act(P, x)⊕ Act(Q, x) A5
Act(P ; Q, x) = Act(P, x) ; Q A6

where A ∈ {rec, sInv,aInv, reply}, ⊕ ∈ {|||,CbB},
mpick = pick(

n
]

i=1
Si⇒Pi,

k
]

i=1
alrm(ai)⇒Qi)

Fig. 4: Activation function

ber of clocks [Daws and Yovine 1996]; the same can be done in parametric timed au-
tomata [André 2013]. An alternative approach is to define a semantics that creates
clocks on the fly when necessary, and prunes them when no longer needed. This ap-
proach was initially proposed for stateful timed CSP [Sun et al. 2013]. This allows a
smaller state space compared to the explicit clock approach; we refer to this second ap-
proach as the implicit clock approach. In this work, we use the implicit clock approach.

4.3.1. Clock Activation. Clocks are implicitly associated with timed processes. For in-
stance, given a communication activity sInv(S), a clock starts ticking once the activity
becomes activated. To introduce clocks on the fly, we define an activation function Act
in Fig. 4, in the spirit of the one defined in [Sun et al. 2013; André et al. 2014]. Given
a process P, we denote by Px the corresponding process that has been associated with
clock x. When a new state s is reached, the activation function is called to assign a new
clock for each newly activated communication activity. Rules A1 and A2 state that a
new clock is associated with a BPEL communication activity A if A is newly activated.
Rules A3 and A4 state that if a BPEL communication activity has already been as-
signed a clock, it will not be reassigned one. Rules A5 and A6 state that function Act is
applied recursively to activated child activities for BPEL structural activities. For rule
A6, function Act is applied only to activity P, but not to activity Q, since only activity P
is executed next (activity Q will be executed only after the completion of activity P).

Given a process P, we denote by aclk(P) the set of active clocks associated with P.
For instance, the set of active clocks associated with process P = sInv(S)x ||| sInv(S1)x′

is {x, x′}.

4.3.2. Idling Function. In Fig. 5, we define the function idle that, given a state s, returns
a constraint that specifies how long an activity can idle at state s. The result is a con-
straint over X ∪U. Rule I1 considers the situation when the communication requires
waiting for the response of a component service S, and the value of clock x must not be
larger than the response time parameter tS of the service. Rule I2 considers the situa-
tion when no waiting is required. Rules I3 to I5 state that the function idle is applied
recursively to activated child activities of a BPEL structural activity. Similar to rule
A6, for rule I4, function Act is applied only to activity P, but not to activity Q, since
only activity P is executed next. Therefore, given a state s and activity P ; Q, we only
need to consider how long the activity P can idle at state s.

4.4. Operational Semantics
We can now define the semantics of a parametric composite service model in the form
of an LTS. Let Y = 〈x0, x1, · · · 〉 be a sequence of clocks.
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idle(A(S)x) = x ≤ tS I1
idle(B(S)x) = (x = 0) I2
idle(P⊕Q) = idle(P) ∧ idle(Q) I3
idle(P ; Q) = idle(P) I4
idle(mpickx) = x ≤ tS ∧ x ≤ a I5

where A ∈ {rec, sInv}, B ∈ {aInv, reply}, ⊕ ∈ {|||,CbB}, mpick =

pick(
n
]

i=1
Si⇒Pi,

k
]

i=1
alrm(ai)⇒Qi), and tS is the parametric response time of service

mpickx.
Fig. 5: Idling function

[ rSInv ]

(v, sInv(S)x,C,D)
e
↪→ (v′,Stop, (x = tS) ∧ C↑,

D + tS)

[ rRec ]

(v, rec(S)x,C,D)
e
↪→ (v′,Stop, (x = tS) ∧ C↑,

D + tS)

[ rReply ]

(v, reply(S)x,C,D)
e
↪→ (v′,Stop, (x = 0) ∧ C↑,

D)

[ rAInv ]

(v, aInv(S)x,C,D)
e
↪→ (v′,Stop, (x = 0) ∧ C↑,

D)

let mpick=pick(
n
]

i=1
Si⇒Pi,

k
]

i=1
alrm(ai)⇒Qi)

[ rPick1 ]

(v,mpickx,C,D)
e
↪→ (v′,Pi, (x = ti)

∧ idle(mpickx) ∧ C↑,D + ti)

[ rPick2 ]

(v,mpickx,C,D)
e
↪→ (v′,Qi, (x = a)

∧ idle(mpickx) ∧ C↑,D + ai)

v(b) = ⊥
[ rCond1 ]

(v,ACbBB,C,D)
e
↪→ (v′,A,C,D)

v(b) = ⊥
[ rCond2 ]

(v,ACbBB,C,D)
e
↪→ (v′,B,C,D)

v(b) = true
[ rCond3 ]

(v,ACbBB,C,D)
e
↪→ (v′,A,C,D)

v(b) = false
[ rCond4 ]

(v,ACbBB,C,D)
e
↪→ (v′,B,C,D)

(v,A,C,D)
e
↪→ (v′,A′,C′,D′),A′ 6= Stop

[ rSeq1 ]

(v,A ; B,C,D)
e
↪→ (v′,A′ ; B,C′,D′)

(v,A,C,D)
e
↪→ (v′,Stop,C′,D′)

[ rSeq2 ]

(v,A ; B,C,D)
τ
↪→ (v′,B,C′,D′)

(v,A,C,D)
e
↪→ (v′,A′,C′,D′)

[ rFlow1 ]

(v,A ||| B,C,D)
e
↪→ (v′,A′ ||| B,

C′ ∧ idle(B),D′)

(v,B,C,D)
e
↪→ (v′,B′,C′,D′)

[ rFlow2 ]

(v,A ||| B,C,D)
e
↪→ (v′,A ||| B′,

C′ ∧ idle(A),D′)

Fig. 6: Set of rules for the transition relation ↪→

Definition 4.4. Let CS = (V, v0,U,P0,C0) be a parametric composite service model.
The semantics of CS (hereafter denoted by LTSCS) is the LTS (Q, s0,Σ, δ) where

Q = {(v,P,C,D) ∈ Valuations(V)× P × CX∪U × LU},
Σ = the set of actions used in CS,
s0 = (v0,P0,C0, 0)

and the transition relation δ is the smallest transition relation satisfying the following.
For all (v,P,C,D) ∈ Q, if x is the first clock in the sequence Y which is not in aclk(P),
and (v,Act(P, x),C ∧ x = 0,D)

a
↪→ (v′,P′,C′,D′) where C′ is satisfiable, then we have:

((v,P,C,D),a, (v′,P′, pruneX\aclk(P′)(C′),D′)) ∈ δ.
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The transition relation ↪→ is specified by a set of rules, given in Fig. 6. Let us first
explain these rules, after which we will go back to the explanation of Definition 4.4.

Synchronous Invocation. Rule rSInv states that a state s = (v, sInv(S)x,C,D) may
evolve into the state s′ = (v′,Stop, (x = tS) ∧ C↑,D + tS) via action e ∈ Σ, where Stop is
the activity that does nothing, and tS is the parametric response time of component ser-
vice S. Note that, from Definition 4.4, the condition (x = tS)∧C↑ is necessarily satisfied
(otherwise this evolution is not possible). The resulting constraint is the intersection
of constraints C↑ and x = tS (recall that the constraint C↑ denotes the time elapsing
of C). Furthermore, the parametric duration from the initial state (D) is augmented
with tS. Rules rSInv, rReply and rAInv are similar.

Pick Activity. Rule rPick1 encodes the transition that takes place due to an
onMessage activity. Let us explain the constraint (x = tS) ∧ idle(mpickx) ∧ C↑. First,
after the transition, the current clock x needs to be equal to the parametric response
time of service S, i. e., x = tS. Second, the constraint idle(mpickx) is added to ensure
that x remains smaller or equal to the maximum duration of the mpickx activity. Third,
the constraint C↑ denotes the time elapsing of C. Rule rPick2 is similar.

Conditional Activity. Given a conditional composition ACbBB, the guard condition b
is a Boolean, hence its values are in {true, false}. As a consequence, given a valuation v
of the variables, then v(b) ∈ {true, false,⊥} (recall that ⊥ denotes an uninitialized
variable). We have that v(b) = ⊥ when the evaluation of b is unknown, due to the fact
that there may be uninitialized variables in b. Since b might be evaluated to either
true or false at certain stages during runtime, we explore both activities A and B when
v(b) = ⊥ so as to reason about all possible scenarios. The case of v(b) = ⊥ is captured
by rules rCond1 and rCond2, and the cases where v(b) ∈ {true, false} are captured by
rules rCond3 and rCond4.

Sequential Activity. rSeq1 states that if activity A′ is not a Stop activity (i. e., activity
A′ has not finished its execution), then a state containing activity A ; B may evolve into
a state containing activity A′ ; B. Otherwise, if A is a Stop activity (i. e., activity A has
finished its execution), then a state containing activity A ; B may discharge activity A
and evolve into a state containing B. This is captured by rSeq2.

Concurrent Activity. For concurrent activity A ||| B, either activity A or activity B can
be executed. This is captured by rFlow1 and rFlow2 respectively. rFlow1 states that if
state (v,A,C,D) can evolve into (v′,A′,C′,D′) via action e ∈ Σ, then a state containing
A ||| B can evolve into a state containing A′ ||| B via action e ∈ Σ, if C′ ∧ idle(B) holds.
That is, the clock constraints in C′ can exceed the duration activity B can last for. Rule
rFlow2 is similar.

Let us now explain Definition 4.4. Starting from the initial state s0 = (v0,P0,C0, 0),
we iteratively construct successor states as follows. Given a state (v,P,C,D), a fresh
clock x which is not currently associated with P is picked from Y. The state (v,P,C,D)
is transformed into (v,Act(P, x),C ∧ x = 0,D), i. e., timed processes which just become
activated are associated with x and C is conjuncted with x = 0. Then, a firing rule is
applied to get a target state (v′,P′,C′,D′). Lastly, clocks which do not appear within P′
are pruned from C′. Observe that one clock is introduced and zero or more clocks may
be pruned during a transition. In practice, a clock is introduced only if necessary; if
the activation function does not activate any subprocess, no new clocks are created.

4.5. Good and Bad States
Let us defined good and bad states in the LTS obtained from Definition 4.4. The ex-
ecution of a bad activity will make the execution of CS end in an undesired terminal
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s0:(mpick, true, 0)

sx
0:(mpickx, x = 0, 0)

s′1:(rgood, x = tps ∧ x ≤ 1, tps) s′2:(rbad, x = 1 ∧ x ≤ tps, 1)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

sx
1:((rgood)x, tps ≤ 1 ∧ x = 0, tps) sx

2:((rbad)x, tps ≥ 1 ∧ x = 0, 1)

s′3:(Stop, tps ≤ 1 ∧ x = 0, tps) s′4:(Stop, tps ≥ 1 ∧ x = 0, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where mpick=pick(PS⇒rgood,alrm(1)⇒rbad), rgood=reply(User),
rbad=[reply(User)]bad, tPS is the parametric response time of
service PS.

Fig. 7: Computing states of service CS (including intermediate states)

s0:(mpick, true, 0)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where mpick=pick(PS⇒rgood,alrm(1)⇒rbad), rgood=reply(User),
rbad=[reply(User)]bad, tPS is the parametric response time of
service PS.

Fig. 8: LTS of service CS

state, which we refer to as a bad state. A terminal state which is not a bad state is
called a good state. The synthesized local time requirement needs to guarantee the
avoidance of all bad states and the termination of each run in a good state. The fact
that each run must end in a good state is explained as follows: The non-determinism
can be resolved at runtime depending on the variable values, or the response time
of a component service. Therefore, we must guarantee that, regardless of the branch
chosen by the composite service at runtime, it will end in a good state.

4.6. Application to an Example
Consider a composite service CS = mpick, where the definition of mpick is given in
Fig. 7. Noted that CS is a part of the SMIS example. The states of CS computed ac-
cording to Definition 4.4 are given in Fig. 7, including intermediate states (detailed in
the following). Since CS has no variable, v = ∅ in all states; therefore, we omit the
component v from all states for the sake of brevity.

— At state s0, the activation function assigns clock x to record time elapsing of pick
activity mpick, with x initialized to zero. The tuple becomes the intermediate state
sx
0 = (mpickx, x = 0, 0).
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— From intermediate state sx
0, the process may evolve into the intermediate state s′1 by

applying the rule rPick1, if the constraint c1 = ((x = tPS) ∧ idle(mpickx) ∧ (x = 0)↑),
where idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ (i. e., x ≥ 0), is satisfiable.
Intuitively, c1 denotes the constraint where tPS time units elapsed since clock x has
started. In fact, c1 is satisfiable (for example with tPS = 0.5 and x = 0.5). Therefore,
it may evolve into the intermediate state s′1 = (rgood, (x = tPS) ∧ idle(mpickx) ∧ (x =

0)↑, tPS) = (rgood, (x = tPS) ∧ x ≤ 1, tPS). Since clock x is not used anymore in s′1.P
which is rgood, it is pruned. After pruning of clock variable x and simplification of
the expression, the intermediate state s′1 becomes the state s1 = (rgood, tPS ≤ 1, tPS).

— From intermediate state sx
0, the process may evolve into the intermediate state

s′2, by applying the rule rPick2, if the constraint c2 = ((x = 1) ∧ idle(mpickx) ∧
(x = 0)↑), where idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ (i. e., x ≥ 0), is
satisfiable. It is easy to see that c2 is satisfiable; therefore, the process may evolve
into the intermediate state s′2 = (rbad, (x = 1) ∧ x ≤ tPS, 1). After clock pruning from
intermediate state s′2, it becomes state s2 = (rbad, tPS ≥ 1, 1).

— From state s1, activation function assigns clock x to the reply activity rgood, and the
process evolves into intermediate state sx

1. From intermediate state sx
1, the process

may evolve into intermediate state s′3 by applying rule rReply, if the constraint
c3 = ((x = 0) ∧ (tPS ≤ 1)↑) is satisfiable, where (tPS ≤ 1)↑ = tPS ≤ 1. In fact it is, and
therefore it evolves into state s′3 = (Stop, tPS ≤ 1 ∧ (x = 0), tPS). After pruning of
the non-active clock, it evolves into the terminal state s3 = (Stop, tPS ≤ 1, tPS). Since
the terminal state is not caused by a bad activity, s3 is considered as a good state,
denoted by X in Fig. 7.

— From state s2, the process may also evolve into the terminal state s4 =
(Stop, tPS≥1, 1). Since the terminal state is caused by a bad activity, it is considered
as a bad state, denoted by × in Fig. 7.

Note that all states sx
i and s′j, where i, j ∈ N and 0 ≤ i ≤ 4, are intermediate states.

State sx
i is the state si after clock assignment operations are applied. State s′j is the

state sj before clock pruning operations are applied. These intermediate states are
given in Fig. 7 to illustrate in details the application of the semantics. The LTS of CS
(without the intermediate states) is given in Fig. 8.

5. SYNTHESIZING THE STATIC LTC
Given CS = (V,U,P0,C0), the global time requirement for CS requires that, for every
state (v,P,C,D) reachable from the initial state (v0,P0,C0, 0) in its LTS, the constraint
D ≤ TG is satisfied, where TG ∈ R≥0 is the global time constraint. The local time
requirement requires that if the response times of all component services of CS satisfy
the local time constraint (LTC) CL ∈ CU , then the service CS satisfies the global time
requirement.

In this section, given a global time constraint TG for a service CS, we present an
approach to synthesize the static LTC (sLTC) CL based on the LTS. The sLTC will
be given in the form of an NNCC over U. We show that if the response times of all
component services of CS satisfy the local time requirement, then the service CS will
end in a good state within TG time units.

5.1. Motivation
Assume a component service S. Assume that the only communication activity that
communicates with S is the synchronous invocation activity sInv(S). Upon invoking
of service S, the activity sInv(S) waits for the reply. The response time of S is equiva-
lent to the waiting time in sInv(S). Therefore, by analyzing the time spent in sInv(S),
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s0:(mpick, true, 0)

OMsg S
s1:(i1, tS≤1, tS)

i1
s3:(Stop, tS≤1, tS+t1)X

OAlrm 1

s2:(i2, tS≥1, 1)

i2
s4:(Stop, tS≥1, 1+t2)X

Fig. 9: LTS of composite service CS

we can get the response time of component service S. Given a composite service CS,
let ti ∈ R≥0 be the response time of component service Si for i ∈ {1, . . . ,n}, and let
Et = {t1, . . . , tn} be a set of component service response times that fulfill the global
time requirement of service CS. Because ti, for i ∈ {1, . . . ,n}, is a real number, there
are infinitely many possible values, even in a bounded interval (and even if one re-
stricts these values to rational numbers). A method to tackle this problem is to rea-
son parametrically, by considering these response times as unknown constants, or
parameters. Let ui ∈ Q≥0 be the parametric response time of component service Si
for i ∈ {1, . . . ,n}, and let Eu = {u1, . . . ,un} be the set of component service paramet-
ric response times. Using constraints on Eu, we can represent an infinite number of
possible response times symbolically. The local time requirement of component ser-
vices of CS is specified as a constraint over Eu. An example of a local time require-
ment is (u1 ≤ 6) ∧ (u2 ≤ 5). This local time requirement specifies that, in order
for CS to satisfy the global time requirement, service S1 needs to respond within 6
time units, and service S2 needs to respond within 5 time units. A local time require-
ment can also be in the form of a dependency between parametric response times, e. g.,
(u2 ≤ u1 ⇒ u1 + u2 ≤ 6) ∧ (u1 ≤ u2 ⇒ u1 ≤ 6). This example requires that when
service S2 responds not slower than service S1, then the sum of the response times
of services S1 and S2 must be at most 6 seconds; however, if service S1 responds not
slower than service S2, then service S1 must respond within 6 seconds.

5.2. Addressing the Good States
We assume a composite service CS and its LTS LTSCS = (Q, s0,Σ, δ); let Qgood be the
set of all good states of service LTSCS. In this section, we assume there are no bad
states; we will discuss bad states in Section 5.3.

Given LTSCS, our goal is to synthesize the local time requirement for service CS.
We make two observations here. First, a good state sg = (vg,Pg,Cg,Dg) ∈ Qgood is
reachable from the initial state s0 iff Cg is satisfiable. Second, whenever the good state
sg is reached, we require that the total delay from initial state s0 to state sg must be
no larger than the global time constraint TG, i. e., Dg ≤ TG. To sum up, given a good
state sg = (vg,Pg,Cg,Dg) where sg ∈ Qgood, we require the constraint (Cg↓U ⇒ (Dg ≤
TG)) to hold. The constraint means that whenever sg is reachable from s0, the total
(parametric) delay from s0 to sg must be less than the global time constraint TG. The
synthesized sLTC for CS is the conjunction of such constraints for each good state
sg ∈ Qgood, that is: ∧

(vg,Pg,Cg,Dg)∈Qgood

(Cg↓U ⇒ (Dg ≤ TG)).

Example. Let us consider a composite service CS whose process component is
pick(S⇒i1,alrm(1)⇒i2) (henceforth referred to as mpick), where S is a component ser-
vice. Suppose the global time requirement of the composite service CS is to respond
within five seconds. Fig. 9 shows the LTS of CS, where ij denotes sInv(Sj), such that Sj
is a component service with parametric response time tj, for j ∈ {1, 2}.
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s0:(mpick′, true, 0)

OMsg S
s1:(i1, tS≤1, tS)

i1
s3:(Stop, tS≤1, tS+t1)X

OAlrm 1

s2:([i2]bad, tS≥1, 1)

[i2]bad

s4:(Stop, tS≥1, 1+t2)×

Fig. 10: LTS of composite service CS′

For composite service CS in Fig. 9, we have two good states (states s3 and s4), and
the synthesized local time requirement for composite service CS is:

(tS ≤ 1)⇒ (tS + t1 ≤ 5) ∧ (tS ≥ 1)⇒ (1 + t2 ≤ 5)

5.3. Addressing the Bad States
Another goal we want to achieve is to avoid all bad states in LTSCS. Let Qbad be the set
of all bad states of service LTSCS. Given a bad state sb = (vb,Pb,Cb,Db) ∈ Qbad, this
bad state must not be reachable from the initial state s0. Hence, in order to prevent
Cb to be satisfiable, we require that the parameters be taken in the negation of the
projection of Cb onto U, i. e., we require that ¬(Cb)↓U be satisfiable. The synthesized
sLTC for CS is the conjunction of such constraints for each bad state sb ∈ Qbad, that is:∧

(vb,Pb,Cb,Db)∈Qbad

(¬(Cb)↓U).

Example. Consider a variant of the example in Fig. 9, where the definitions of i1 and
i2 remain the same. But now, i2 is treated as a bad activity, which is represented as
[i2]bad. That is, the composite service becomes a composite service CS′ whose process
component is pick(S⇒i1,alrm(1)⇒[i2]bad) (henceforth referred to as mpick′). This ser-
vice results in the LTS shown in Fig. 10, where state s4 is a bad state. We use this
example to provide the intuition how to modify the synthesized NNCC to avoid reach-
ing bad states. Note that the constraint s4.C = tS ≥ 1 is introduced by the pick ac-
tivity. A way to avoid the reachability of s4 is to prevent the transition OAlrm 1 from
firing. An effective way to achieve this is by adding the negation ¬ (s4.C↓U) to the
synthesized NNCC. Therefore, the local time requirement for composite service CS′ is
(s3.C↓U ⇒ (s3.D ≤ TG)) ∧ ¬ (s4.C↓U). This NNCC can ensure that any complete run of
the service ends in a good state. (This will be proved in Section 5.6.)

5.4. Synthesis Algorithms
Algorithm 1 presents the entry algorithm for synthesizing the sLTC for a given ser-
vice CS, by traversing the LTS (Q, s0,Σ, δ) of CS. Algorithm 1 simply calls synthLTS(s)
applied to the initial state s0; this second algorithm is given in Algorithm 2.

Algorithm 1: synthSLTC(CS)

input : Composite service model CS with initial state s0
output: The sLTC CL ∈ NCU

1 return synthLTS(s0);

Given a state s = (v,P,C,D) in the LTS of service CS, synthLTS(s) returns a con-
straint C ∈ CU . If state s is a good state (line 1), then it returns the constraint
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s0:(S, true, 0)

s1:(rgoodCbBA1, true, tDS)

s2:(A1, true, tDS) s3:(rgood, true, tDS)

s4:(P1, true, tDS)

s5:(Stop, true, tDS)X

s6:(A2, tFS≥1, tDS+1) s7:(rgood, tFS≤1, tDS+tFS)

s8:(P2, tFS≥1, tDS+1)

s9:(Stop, tFS≤1, tDS+tFS)X

s10:(rbad, tPS≥1∧tFS≥1, tDS+2) s11:(rgood, tPS≤1∧tFS≥1, tDS+1+tPS)

s12:(Stop, tPS≥1∧tFS≥1, tDS+2) s13:(Stop, tPS≤1∧tFS≥1, tDS+1+tPS)

sInv DS
[if ]

[else]

AInv FS

reply User

OAlrm 1

OMsg FS

AInv PS

reply User

OAlrm 1

OMsg PS

reply Failure reply User

× X

S=(sInv(DS) ; rgoodCbBA1),A1=(aInv(FS) ; P1),P1=(pick(FS⇒rgood,
alrm(1)⇒A2)),A2=(aInv(PS) ; P2),P2=(pick(PS⇒rgood,alrm(1)⇒rbad)),
rgood=(reply(User)), rbad=([reply(User)]bad)

Fig. 11: LTS of the SMIS

s.C↓U ⇒ (s.D ≤ TG) (line 2), where TG is the given global time constraint of the ser-
vice CS. If state s is a bad state (line 3), then the negation of the current constraint
s.C↓U is returned (line 4). If s is a non-terminal state (line 5), the algorithm returns
the conjunction of the result of the algorithm recursively applied on the successors of s
(line 6).
Algorithm 2: synthLTS(s)

input : State s of LTS
output: The constraint for LTS that starts at s

1 if s is a good state then
2 return (s.C↓U ⇒ (s.D ≤ TG));
3 else if s is a bad state then
4 return ¬ (s.C↓U);
5 else

// s is a non-terminal state
6 return

∧
s′∈succ(s) synthLTS(s′) ;

5.5. Application to the Running Example
Fig. 11 shows the LTS of the running example introduced in Section 3. Algorithm
synthLTS(s) is used to synthesize the local time requirement for SMIS based on the
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(tDS ≤ 3) ∧ (tFS ≤ 1)⇒ (tDS+tFS ≤ 3) ∧
(tFS ≥ 1 ∧ tPS ≤ 1)⇒ (tDS+tPS ≤ 2) ∧ ¬ (tFS ≥ 1 ∧ tPS ≥ 1)

Fig. 12: sLTC of SMIS

(tFS < 1 ∧ tDS + tFS ≤ 3) ∨ (tPS < 1 ∧ tFS > 1 ∧ tDS + tPS ≤ 2) ∨
(tPS < 1 ∧ tDS + tFS ≤ 3 ∧ tDS + tPS ≤ 2)

Fig. 13: sLTC of SMIS after simplication

LTS. The sLTC of the running example is shown in Fig. 12. After simplification3 using
Z3 [de Moura and Bjørner 2008], a Satisfiability Modulo Theories (SMT) solver devel-
oped by Microsoft Research, we get the sLTC shown in Fig. 13. We first translate our
expressions into Z3 expressions, and apply Z3 built-in strategies (e. g., simplify) to get
the equivalent DNF formulas.

This result provides us useful information on how the component services collec-
tively satisfy the global time constraint. That is useful when selecting component ser-
vices. For the case of SMIS, one way to fulfill the global time requirement of SMIS
is to select component service FS with response time that is less than 1 second, and
component services DS and FS where the summation of their response times should
be less than or equal to 3 seconds.

Service Selection. Recall that the stipulated response time of a component service
S denotes the upper bound on its response time with respect to the synthesized con-
straint. The sLTC can be used to select a set of services that collectively satisfy the
global time requirement of a composite service. Given a composite service CS with n
component services E = {S1,S2, . . . ,Sn}, let {t1, t2, . . . , tn} and {st1, st2, . . . , stn}, where
ti ∈ LU and sti ∈ R≥0 are the parametric response times and stipulated response times
for component services in E respectively. One can check whether the component ser-
vices can collectively satisfy the sLTC of the composite service CS, by checking the
satisfiability of the formula (

∧
1≤i≤n ti ≤ sti)⇒ synthSLTC(CS).

For the SMIS example, we have (tFS ≤ 1.5 ∧ tPS ≤ 1.5 ∧ tDS ≤ 0.5) ⇒
synthSLTC(SMIS). This means that if we select component services FS, PS, and DS
that respond within 1.5 seconds, 1.5 seconds, 0.5 seconds respectively, we always guar-
antee the sLTC of SMIS.

5.6. Termination and Soundness
We show the termination and soundness of synthesis of synthSLTC.

5.6.1. Termination

LEMMA 5.1. Let CS be a service model. Then LTSCS is acyclic and finite.

PROOF. From Assumption 1 and from the fact that there are no recursive activities
in BPEL.

PROPOSITION 5.2. Let CS be a service model. Then synthSLTC(CS) terminates.

PROOF. From Lemma 5.1, LTSCS is acyclic. Algorithm 1 is obviously non-recursive.
Now, Algorithm 2 is recursive (line 6). However, due to the acyclic nature of LTSCS and

3For readability, we give the constraint as output in disjunctive normal form (DNF), instead of the usual
conjunctive normal form (CNF).
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the fact that Algorithm 2 is called recursively on the successors of the current state, then
no state is explored more than once. This ensures termination.

5.6.2. Soundness. In this section, we prove that for any parameter valuation satisfy-
ing the output of synthSLTC, any complete run ends in a good state, and all reachable
good states are reachable within the global delay TG.

We first need several definitions and intermediate results. Given a parametric ser-
vice model CS and a parameter valuation π, let us relate runs of LTSCS and LTSCS[π].

Definition 5.3 (equivalent runs). Let CS be a parametric service model, and let π
be a parameter valuation.

Let ρ = 〈(v0,P0,C0,D0),a0, (v1,P1,C1,D1), . . . ,an−1, (vn,Pn,Cn,Dn)〉 be a run of
LTSCS[π]. Let ρ′ = 〈(v′0,P′0,C′0,D′0),a′0, (v′1,P′1,C′1,D′1), . . . ,a′n−1, (v′n,P′n,C′n,D′n)〉 be a run
of LTSCS.

The two runs ρ and ρ′ are equivalent if vi = v′i and Pi = P′i[π] for 0 ≤ i ≤ n and ai = a′i
for 0 ≤ i ≤ n− 1.

The following lemma states that, given a run of LTSCS[π], there exists a unique equiv-
alent run in LTSCS. Since we defined runs as alternating symbolic states and actions
(and not, more generally, edges) the uniqueness can only be proven if the LTS is deter-
ministic, i. e., if from a given state, all outgoing actions are pairwise different. This is
not true if, in the composite service, different calls are made to the same service from
the same process. As a consequence, without loss of generality, we assume that actions
are made different if necessary, by labeling with different actions different calls: if
two different calls to the same service can be made from the same process in different
program locations (e. g., two asynchronous invocations AInv FS), then we label them
differently in the LTS (e. g., AInv FS1 and AInv FS2 respectively).

LEMMA 5.4. Let CS be a parametric service model, and let π be a parameter valu-
ation. Let ρπ be a run of LTSCS[π].

Then there exists a unique run of LTSCS equivalent to ρπ.

PROOF. By induction on the length of the runs. We prove in fact a slightly stronger
result: given a state (v,P,C,D) of a run ρ in LTSCS[π], and given a state (v′,P′,C′,D′)
of the equivalent run ρ′ in LTSCS, we show that these states are not only equivalent,
but also that C ⊆ C′.

Base case. From Definition 4.4, the initial state of LTSCS is (v0,P0,C0, 0). The initial
state of LTSCS[π] is (v0,P0[π],C0[π], 0). Since C0[π] ⊆ C0, then the result trivially
holds.
Induction step. Assume ρπ is a run of LTSCS[π] of length m reaching state
(v1,P1,C1,D1); assume there exists a unique run of LTSCS equivalent to ρπ and
of length m, reaching state (v′1,P′1,C′1,D′1). From Definition 5.3, it holds that v1 = v′1
and P1 = P′1[π]. From the induction hypothesis, it holds that C1 ⊆ C′1.
Let (v2,P2,C2,D2) be the successor state of (v1,P1,C1,D1) via action a in ρπ.
Assume (v2,P2,C2,D2) is obtained from (v1,P1,C1,D1) by applying rule rSInv in
Fig. 6. Since C1 ⊆ C′1, then rule rSInv can also be applied to (v′1,P′1,C′1,D′1), yielding
a state (v′2,P′2,C′2,D′2). Now, we have:
C1 ⊆ C′1 =⇒ C↑1 ⊆ C′↑1
=⇒ (x = tS ∧ C↑1) ⊆ (x = tS ∧ C′↑1 )
=⇒ C2 ⊆ C′2.
In particular, C2 ⊆ C′2 implies that C′2 is non-empty, hence the state (v′2,P′2,C′2,D′2)
is a valid state. In addition, since P1 = P′1[π] and rule rSInv derives to Stop, then
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P2 = P′2[π]. Similarly, variables are updated in the same manner on both sides,
hence v2 = v′2. The proof is similar for other rules in Fig. 6.
Finally, thanks to the hypothesis of determinism on action labels, then the succes-
sor state (v′2,P′2,C′2,D′2) is the unique successor state of (v′1,P′1,C′1,D′1) in LTSCS
via action a. Hence there exists a unique run of LTSCS equivalent to ρπ and of
length m + 1.

In the following, given a run ρπ of LTSCS[π], from Lemma 5.4 we can safely refer to
the run of LTSCS equivalent to ρπ.

Now, we define a state of an LTS LTSCS[π] as π-(non-)terminal if there exists an
equivalent (non-)terminal state in LTSCS. Formally:

Definition 5.5 (π-terminal state). Let CS be a parametric service model, and let π
be a parameter valuation, Let ρπ be a run of LTSCS[π] reaching a state sπ.

Let ρ be the run of LTSCS equivalent to ρπ, and reaching a state s.
sπ is a π-non-terminal (resp. π-terminal) state if s is non-terminal (resp. terminal)

in LTSCS.

Given CS[π], we now introduce the notion of early-deadlocked LTS: LTSCS[π] is early-
deadlocked if it contains a state that is a terminal state in LTSCS[π], although its equiv-
alent state in LTSCS is non-terminal. Formally:

Definition 5.6 (early-deadlocked LTS). Let CS be a parametric service model, let π
be a parameter valuation.

The LTS of CS[π] is early-deadlocked if it contains at least one state s such that s is
a π-non-terminal state, and s is a terminal state in LTSCS[π].

This happens because π 6|= s′.C, for each s′ ∈ succ(s) in the LTS of parametric service
model CS.

In the following Lemma 5.7, we show that, given π |= synthSLTC(CS), then CS[π] is
not early-deadlocked. Note that this does not mean that the system is deadlock-free;
on the contrary, the system always eventually ends in a deadlock situation, since all
terminal states have no successor (we consider acyclic systems). However, we show
that all terminal states of LTSCS[π] are also π-terminal states.

LEMMA 5.7. Let CS be a parametric service model. Let π |= synthSLTC(CS). Then
LTSCS[π] is not early-deadlocked.

PROOF. We reason here on the traversal of the LTS of CS, as synthSLTC relies on this
traversal. Assume LTSCS = (Q, s0,Σ, δ). The constraint associated with the initial state
is true, i. e., s0.C = true, therefore it is always satisfiable. Given a state s and a state
s′ such that s′ ∈ succ(s), the situation where π |= s.C and π 6|= s′.C can only happen
when s′.C↓U is stronger than s.C↓U , i. e., s′.C↓U ( s.C↓U . In such a case, the additional
constraints in s′.C↓U could only be introduced by a pick or a flow activity using the idle
function (see Fig. 6), for the purpose of constraining the relative speed of the services.
Assume the pick construct mpick = pick(S⇒P,alrm(a)⇒Q), where S is a service with
parameter response time tS, a ∈ R≥0 and P,Q are composite service activities. For the
activity P to be enabled, the satisfaction of constraint tS ≤ a is required, while for the
activity Q to be enabled, the satisfaction of constraint tS ≥ a is required. Since given
any parameter valuation π, mpick will be able to execute either of the branches, therefore
it cannot be deadlocked. Assume the concurrent activity as conc = P ||| Q, where P,Q
are composite service activities. If P (resp. Q) is a reply or an asynchronous invocation
activity, then P (resp. Q) is always executable, since it takes no time. If P and Q are
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synchronous invocation or receive activities, which takes parameter response time tP
and tQ respectively, then activity P is executable, if tP ≤ tQ, and activity Q is executable
if tQ ≤ tP. Since given any parameter valuation π, either of the branches in conc is
executable, therefore it cannot be deadlocked.

The following lemmas will be used to prove the subsequent Theorem 5.11.

LEMMA 5.8. Let CS be a service model. Let π |= synthSLTC(CS). Then no bad state
is reachable in LTSCS[π].

PROOF. Let K = synthSLTC(CS). K is a conjunction of “good” parameter constraints
(accumulated from line 2 in Algorithm 2) and “bad” parameter constraints (accumu-
lated from line 4 in Algorithm 2). Hence, K contains at least the negated constraints of
all bad states. Hence, the bad states are unreachable for any π |= K.

LEMMA 5.9. Let CS be a service model. Let π |= synthSLTC(CS). Then any complete
run of LTSCS[π] ends in a good state.

PROOF. First, note that the initial state s0 is reachable in LTSCS[π] (since s0.C =
true). If the initial state is the only state, then from Lemma 5.8, it is also not a bad
state; hence it is a good state. Now, if it is not the only state, from the absence of inter-
mediate deadlocks (Lemma 5.7), from the finiteness of the LTS (Lemma 5.1) and from
the absence of bad states (Lemma 5.8), then any run of LTSCS[π] ends in a good state.

LEMMA 5.10. Let CS be a service model. Let π |= synthSLTC(CS). Then for all good
state (v,Pg,C,d) of LTSCS[π], d ≤ TG.

PROOF. Let sg = (v,Pg,C,D) be a reachable state in LTSCS such that sg is a good
state. From Definition 4.4, C is satisfiable (and hence C↓U too). Since sg is a good
state, Algorithm synthLTS added a constraint C↓U ⇒ D ≤ TG to the result. Hence,
synthSLTC(CS) ⊆ (C↓U ⇒ D ≤ TG). Now, for any π |= synthSLTC(CS), we have
that π |= (C↓U ⇒ D ≤ TG), and hence all reachable states in LTSCS[π] are such that
d ≤ TG.

We can now formally state the soundness of synthSLTC.

THEOREM 5.11. Let CS be a service model. Let π |= synthSLTC(CS). Then:

(1) Any complete run of LTSCS[π] ends in a good state.
(2) For all good state (v,Pg,C,d) of LTSCS[π], d ≤ TG.

PROOF. From Lemmas 5.9 and 5.10.

Given a composite service CS, and assume Sg = {s1, . . . , sn} be the set of all good
states in LTSCS. In the following proposition, we show that any π |= synthSLTC(CS)
necessarily satisfies (at least) one of the good states’ constraints, i. e., π |= si.C↓U for
some si ∈ Sg. Indeed, recall synthSLTC(CS) is a conjunction of good and bad con-
straints. In the following proposition, we show that the good constraints of the form
P = (c1 ⇒ r1 ∧ . . . ∧ cn ⇒ rn) will not hold trivially by just having ci = false, for all
i ∈ {1, . . . ,n}.

PROPOSITION 5.12. Let CS be a service model, and Qgood be the set of all good states
in LTSCS. Let π |= synthSLTC(CS).

Then ∃ s ∈ Qgood : π |= s.C↓U .

PROOF. From Algorithm 2, synthSLTC(CS) is a conjunction of “good” constraints
(accumulated from line 2 in Algorithm 2) and “bad” constraints (accumulated from
line 4 in Algorithm 2). That is, assume synthSLTC(CS) = (Cg ∧ Cb), where Cg =
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si∈Qgood

(si.C↓U ⇒ (si.D ≤ TG)), and TG be the global time constraint, and Cb =∧
sj∈Qbad

¬(s.Cj↓U). Hence, since π |= synthSLTC(CS) then π |= Cg, hence ∃ s ∈ Qgood :

π |= s.C↓U .

5.7. Incompleteness of synthSLTC
A limitation of synthSLTC is that it is incomplete, i. e., it does not include all param-
eter valuations that could give a solution to the problem of the local time require-
ment. Given an expression ACa=1BB, since a may be unknown at design time, we
explore both branches (activities A and B) for synthesizing the sLTC. Nevertheless,
only exactly one of these activities will be executed at runtime. Including constraints
from activities A and B will make the constraints stricter than necessary; therefore
some of the feasible parameter valuations are excluded – this makes the synthesis by
synthSLTC incomplete. This can be seen as a trade-off to make the synthesized local
time requirement more general, i. e., to hold in any composite service instance. In Sec-
tion 6, we will introduce a method that leverages on runtime information to mitigate
this problem.

6. RUNTIME REFINEMENT OF LOCAL TIME REQUIREMENT
In order to improve the local time requirement computed statically using the algo-
rithms presented in Section 5, we introduce in this section a refined local time require-
ment, together with its usage for runtime adaptation of a service composition.

6.1. Motivation
Let us consider a composite service CS. Assume that we have selected a set of com-
ponent services such that their stipulated response times fulfill the sLTC of CS. Since
the composite service is executed under a highly evolving dynamic environment, the
design time assumptions may evolve at runtime. For instance, the response times of
component services could be affected by network congestion. This may result in the
non-conformance of stipulated response times for some component services. However,
the non-conformance of stipulated response times of component services does not nec-
essary imply that the composite service will not satisfy its global time requirement.
This is because the sLTC is synthesized at the design time to hold in any execution
trace of CS; whereas at runtime, the runtime information can be used to synthesize a
more relaxed constraint for CS.

More specifically, given a composite service CS, we have two pieces of runtime infor-
mation that may help to synthesize a more relaxed constraint: the execution path that
has been taken by CS, and the elapsed time of CS. First, the execution path taken by
CS can be used for LTS simplification. This is because in the midst of execution, some
of the execution traces can be disregarded and therefore a weaker LTC, that includes
more parameter valuations, may be synthesized. Second, the time elapsed of CS can
be used to instantiate some of the response time parameters with real time constants;
this makes the synthesized LTC contain less uncertainty and be more precise.

For example, consider the SMIS composite service, the LTS of which is depicted
in Fig. 11. At runtime, after invocation of the component service DS, SMIS will be at
state s2. Assume that DS does not conform to its stipulated response time. Therefore, it
is desirable to check whether invoking FS can still satisfy the global time requirement
of CS. One can make use of sLTC for this purpose. Nevertheless, a more precise LTC
may be synthesized at state s2.

The first observation is that, from state s2, we can safely ignore the constraints from
the good state s5, since it is not reachable from s2. The second observation is that the
delay from state s0 to state s2 (say r seconds, with r ∈ R≥0) is known. For this reason,
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we can substitute the delay component of state s2, which is the parametric response
time tDS, with the actual time delay r. This motivates the use of runtime information
of the composite service to refine the LTC. We refer to the runtime refined LTC as the
runtime LTC (denoted by rLTC). In addition to this refinement, we can also simplify
the LTS by pruning the states corresponding to past states (e. g., s0, s1 in Fig. 11), as
well as the successors of these past states that were not met in practice (e. g., s3 and s5
in Fig. 11), because another branch was taken at runtime. We show the LTS of SMIS
before and after simplification in Figs. 14a and 14b respectively.

S0

S1

S2

S3

S5

S4

S6 S7

... ...

(a) Before simplification

S2

S4

S6 S7

... ...

(b) After simplification

Fig. 14: LTS Simplification of SMIS

By incorporating the runtime information, the resulting rLTC at state s2 is:

(tFS ≤ 1)⇒ (r+tFS ≤ 3) ∧
(tFS ≥ 1 ∧ tPS ≤ 1)⇒ (r+tPS ≤ 2) ∧
¬ (tFS ≥ 1 ∧ tPS ≥ 1)

Although the synthesized rLTC is still incomplete, nevertheless by incorporating
runtime information, it allows synthesizing a constraint weaker than sLTC. By allow-
ing more parameter valuations, rLTC mitigates the problem of the incompleteness of
the sLTC.

6.2. Runtime Adaptation of a BPEL Process
In this section, we introduce a service adaptation framework to improve the confor-
mance of global time requirement for a composite service. The framework makes use
of rLTC and the architecture of the framework is shown in Fig. 15. There are two mod-
ules in the framework – Runtime Engine Module (RE) and Service Monitoring Module
(SM). The Runtime Engine Module (RE) provides an environment for the execution of
a BPEL service; here, we use ApacheODE [Foundation 2007], an open source BPEL
engine. We instrument the runtime component of Apache ODE to communicate with
the service monitoring module.

The Service Monitoring Module (SM) is used to monitor the execution of a BPEL
service. During the deployment of a service CS, SM generates the LTS (Q, s0,Σ, δ) of
CS and stores it in the cache of SM so that it is available when CS is executing.

During the execution of the composite service CS, the executed action ae ∈ Σ from
RE is used to update the active state sa ∈ Q of LTS stored in SM. The action ae is also
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Executed

Actions

Check

Satisfiability

Runtime Engine Module (RE)

<BPEL>

…

<invoke…/>

....

</BPEL>

Service Monitoring Module (SM)

Fig. 15: Service adaptation framework

stored as part of the current execution run. SM also keeps track of the total execution
time for this execution run, as well as the response time for each component service
invocation.

Prior to the invocation of a component service S, RE will consult SM to check the
satisfiability of rLTC. If the rLTC of sa is satisfiable, then SM will instruct RE to
continue invoking S as usual. Otherwise, some kind of mitigation procedure may be
triggered. One of the possible mitigation procedures is to invoke a backup service of S,
Sbak, which has a faster stipulated response time than S (that may come with a cost).
An example of CS, S and Sbak, are services SMIS, FS and PS respectively.

In the following, we introduce the details on the synthesis of rLTC (Section 6.3) and
satisfiability checking (Section 6.4).

6.3. Algorithm for Runtime Refinement
A way to calculate the rLTC could be to run synthSLTC (Algorithm 2) from a state
s in the LTS. However, this requires traversing the state-space repeatedly for every
calculation of the rLTC. To make it more efficient, we extend synthSLTC by calculating
the rLTC for each state s during the synthesis of the LTC at the design time. Therefore,
at runtime, we only need to retrieve the synthesized rLTC of the corresponding state
for direct usage.

synthRLTC (given in Algorithm 3) synthesizes the rLTC for each state in the LTS.
Before explaining the algorithm, let us introduce a few notations used in Algorithm 3.
First, we assume that states in the LTS of CS are augmented with an additional
“field” to store the computed rLTC. We use s.rLTC to denote the rLTC associated
with state s. Additionally, we use the following shorthand to perform a conjunction
of pairs of parametric constraints (consi.g, consi.b) such that the resulting pair is
such that its left-hand (resp. right-hand) side is the conjunction of all left-hand (resp.
right-hand) sides:

d
((cons1.g, cons1.b), . . . , (consn.g, consn.b)) denotes ((consn.g ∧ . . . ∧

consn.g), (consn.b ∧ . . . ∧ consn.b)).
Given a composite service CS together with its associated LTS, and a state in LTSCS,

synthRLTC returns a constraint pair cs = (g,b), where g,b ∈ CU . In this pair, g (resp. b)
denotes the constraint associated to a good (resp. bad) state. Given a constraint pair
cs, we use cs.g (resp. cs.b) to refer to the first (resp. second) component of cs. Variables
df and rf are free variables, which are variables to be substituted at runtime. In par-
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ticular, given a state s, free variables df and rf in s.rLTC are to be substituted by the
delay component s.D ∈ LU and the actual delay r ∈ R≥0 from the initial state to the
state s respectively.

Algorithm 3: synthRLTC(CS,LTSCS, s)

input : Composite service CS
input : LTS LTSCS of CS
input : State s in LTS of CS
output: Constraint pair for sub-LTS of CS starting with s

1 cons← ∅;
2 if s is a good state then
3 cons← (s.C↓U ⇒ (s.D− df + rf ≤ TG), true);
4 s.rLTC← cons.g ∧ (df = s.D);
5 else if s is a bad state then
6 cons← (true,¬ (s.C↓U));
7 s.rLTC← cons.b;
8 else

// s is a non-terminal state
9 cons←

d
s′∈succ(s) synthRLTC(s′);

10 s.rLTC← cons.g ∧ cons.b ∧ (df = s.D);
11 return cons;

Let us now explain synthRLTC in details. Given a good state s (line 2), s.rLTC is
assigned with value cons.g, with free variable df substituted with s.D (line 4); note
that substitution is here achieved using conjunction of the constraint with the equality
df = s.D. As an illustration, consider the good state s13 in the SMIS example (the LTS
of which is given in Fig. 11). At runtime, assume the active state is at state s13, and
assume that it takes r ∈ R≥0 seconds to execute from the initial state s0 to state s13.
Therefore, the previously unknown parametric response time in the delay component
of state s13, i. e., tDS + 1 + tPS, can be substituted with the real value r. To achieve this,
at line 3, we subtract away the free variable df , which is to be substituted with the
response time parameter of state s13, and add back the free variable rf , which is to be
substituted with the real value r. We substitute the free variable df at line 4. For free
variable rf , it is only substituted in Algorithm 4 at runtime when the delay is known.
In the case of the SMIS example, the rLTC of state s13 after substituting free variable
rf with value r (i. e., s13.rLTC ∧ (rf = r)) is ((tPS ≤ 1 ∧ tFS ≥ 2)⇒ (r ≤ 3)).

When s is a bad state (lines 5 to 7), we simply compute the negation of the associated
constraint so as to keep the system reaching this bad state (just as in Algorithm 2).

When s is a non-terminal state (line 8), s.rLTC is assigned with the conjunction of
all good and bad constraints computed by recursively calling synthRLTC on the succes-
sor states of s, where free variable df is substituted with s.D (line 10). The reason for
taking the conjunction of both good and bad constraints is to guarantee any complete
run from state s ends in a good state, and to avoid the reachability of any bad state
from s. Also note that the rLTC of the initial state s0 is the same as its sLTC, i. e.,
s0.rLTC = sLTC; the reason is that at the initial state s0, there is no runtime informa-
tion for refining the sLTC, hence the refined LTC is equal to the static LTC. In fact, one
can see Algorithm 3 as a generalization of Algorithm 1, in the sense that Algorithm 3
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can be applied to any state (not only the initial one), and can benefit from the current
partial execution.

6.4. Satisfiability Checking
We now introduce a satisfiability checking algorithm. This satisfiability checking is
done before the invocation of a component service. Suppose that, before the invocation
of a component service Si, CS is at the active state sa. The satisfiability of the rLTC at
sa will be checked before Si is invoked. If it is satisfiable, then it will invoke Si as usual.
Otherwise, some mitigation procedures will be triggered. A mitigation procedure could
be to invoke a faster backup service S′i instead of Si.

Given a composite service CS with n component services E = {S1,S2, . . . ,Sn}, let
us explain how the satisfiability checking is performed prior to the invocation of a
component service Si ∈ E. Let {t1, t2, . . . , tn} and {st1, st2, . . . , stn}, where ti ∈ LU and
sti ∈ R≥0, be the set of parametric response times and stipulated response times for
component services in E respectively. We denote by TCS = {(t1, st1), . . . , (tn, stn)} the
stipulated response time information of component services CS.

Algorithm 4: checkSat(LTSCS, sa, r,TCS)
input : The LTS of the parametric composite service CS
input : The active state sa ∈ Q
input : The elapsed time r ∈ R≥0
input : The stipulated response time information TCS = {(t1, st1), . . . , (tn, stn)}
output: True if the local time constraint at sa is satisfiable, false otherwise

1 return Is Sat((
∧

1≤i≤n ti ≤ sti)⇒ (sa.rLTC ∧ (rf = r)));

We give in Algorithm 4 the algorithm checking the satisfiability of rLTC at state sa ∈
Q. With the assumption that all component services will reply within their stipulated
response times (

∧
1≤i≤n ti ≤ sti), checkSat checks whether the rLTC at state sa can be

satisfied with free variables rf substituted with the actual elapsed time r ∈ R≥0. The
function Is Sat at line 1 will return true if the input constraint is satisfiable.

6.5. Termination and Soundness
We now prove the termination and soundness of the synthesis of synthRLTC.

6.5.1. Termination

PROPOSITION 6.1. Let CS be a service model, s be a state in LTSCS. Then
synthRLTC(CS,LTSCS, s) terminates.

PROOF. Observe that Algorithm 3 is recursive (on line 9). However, due to the acyclic
nature of LTSCS (from Lemma 5.1) and the fact that Algorithm 3 is called recursively
on the successors of the current state, then no state is explored more than once. This
ensures termination.

6.5.2. Soundness. Theorem 6.3 will formally state the correctness of our runtime re-
finement algorithm. It generalizes Theorem 5.11 to the case of runtime refinement.
We first need the following lemma. The following lemma states that, given a run ρ
of LTSCS, there exists a unique equivalent run in LTSCS[π], provided π satisfies the
parametric constraint associated with the last state of ρ. The result is dual to what we
proved in Lemma 5.4.
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LEMMA 6.2. Let CS be a parametric service model, and let π be a parameter valu-
ation. Let ρ be a run of LTSCS ending in a state (vn,Pn,Cn,Dn).

For any π |= Cn↓U , there exists a unique run of LTSCS[π] equivalent to ρ.

PROOF. By induction on the length of the runs. We prove in fact a slightly stronger
result: given a state (v′,P′,C′,D′) of a run ρ′ in LTSCS, and given a state (v,P,C,D) of
the equivalent run ρ in LTSCS[π], we show that these states are not only equivalent,
but also that C = C′[π].

Base case. From Definition 4.4, the initial state of LTSCS is (v0,P0,C0, 0). The initial
state of LTSCS[π] is (v0,P0[π],C0[π], 0). Since C0 = true then C0 = C0[π]. Hence the
result trivially holds in that case.
Induction step. Assume ρ is a run of LTSCS of length m reaching state
(v′1,P′1,C′1,D′1). Let (v′2,P′2,C′2,D′2) be the successor state of (v′1,P′1,C′1,D′1) via ac-
tion a in ρ. Let π |= C′2↓U . Assume there exists a unique run of LTSCS[π] equivalent
to ρ and of length m, reaching state (v1,P1,C1,D1). From Definition 5.3, it holds that
v1 = v′1 and P1 = P′1[π]. From the induction hypothesis, it holds that C1 = C′1[π].
Assume (v′2,P′2,C′2,D′2) is obtained from (v′1,P′1,C′1,D′1) by applying rule rSInv in
Fig. 6. Recall that C1 = C′1[π]; since P1 = P′1[π] (from Definition 5.3), we can apply
rule rSInv to (v1,P1,C1,D1), yielding a state (v2,P2,C2,D2). From Fig. 6, we know
that C2 = (x = tS ∧ (C↑1)) and C′2 = (x = tS ∧ (C′↑1 )). Now, we have:
C2 = (x = tS ∧ (C↑1))
= (x = tS ∧ (C′1[π])↑) (induction hypothesis)
= (x = tS ∧ (C′1 ∧

∧
ui∈U ui = πi)

↑) (definition of valuation)
= (x = tS ∧ (C′1)↑) ∧

∧
ui∈U ui = πi (property of time elapsing)

= C′2 ∧
∧

ui∈U ui = πi (definition of C′2)
= C′2[π] (definition of valuation)
Note that adding x = tS while keeping satisfiability of the expression is only true be-
cause π |= C′2↓U . This implies that C′2[π] is non-empty, hence the state (v2,P2,C2,D2)
is a valid state. In addition, since P1 = P′1[π] and rule rSInv derives to Stop, then
P2 = P′2[π]. Similarly, variables are updated in the same manner on both sides,
hence v2 = v′2. The proof is similar for other rules in Fig. 6.
The proof of uniqueness is identical to that of Lemma 5.4.

THEOREM 6.3. Let CS be a service model with stipulated response time information
TCS. Let LTSCS be the LTS of CS. Let s be the current state in LTSCS and r be the current
elapsed time.

Fix π |= synthRLTC(LTSCS, s, r,TCS). Then:

(1) there exists a non-empty state sπ in LTSCS[π] equivalent to s;
(2) any complete run of the sub-LTS of LTSCS[π] starting from sπ ends in a good state;
(3) for all good states (v,Pg,C,d) in the sub-LTS of LTSCS[π] starting from sπ, then

d ≤ TG.

PROOF.

(1) From Lemma 6.2.
(2) From Definition 4.2, the sub-LTS of LTSCS[π] starting from sπ contains the suc-

cessors of sπ in LTSCS[π], and hence any complete run of the sub-LTS of LTSCS[π]
starting from sπ corresponds to the end of some complete run of LTSCS[π]. From
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Lemma 5.9, any complete run of LTSCS[π] ends in a good state, which gives the re-
sult.

(3) Any good state of the sub-LTS of LTSCS[π] starting from sπ is also a good state of
LTSCS[π]. From Lemma 5.10, for all good state of LTSCS[π], d ≤ TG, which gives the
result.

6.6. Discussion
Termination. From Theorem 6.1, our method terminates thanks to the fact that

BPEL composite services do not support recursion, and thanks to Assumption 1 on
the loop activities ensuring that the upper bound on the number of iterations and the
time of execution is known. We discuss how to enforce this assumption in the presence
of loops in the composite service. The upper bound on the number of iterations could
be either inferred by using loop bound analysis tool (e. g., [Ermedahl et al. 2007]), or
could be provided by the user otherwise. In the worst case, an option is also to set up a
bound arbitrary but “large enough”. Concerning the maximum time of loop executions,
it could be enforced by using proper timeout mechanism in BPEL.

Time for internal operations. For simplicity, we do not account for the time taken
for the internal operations of the system. In reality, the time taken by the internal
operations may become significant, especially when the process is large. We can pro-
vide a more accurate synthesis of the constraints by including an additional constraint
toverhead ≤ b, where toverhead ∈ R≥0 is a time overhead for an internal operation, and
b ∈ R≥0 is a machine dependent upper bound for toverhead. The method to obtain an
estimation of b is beyond the scope of this work; interested readers may refer to, e. g.,
[Moser et al. 2008].

Completeness of synthRLTC. The rLTC computed by our algorithm synthRLTC is still
incomplete in general, with the same reason for the incompleteness of the sLTC com-
puted by synthSLTC as discussed in Section 5.7. Nevertheless, it helps to mitigate the
problem of incompleteness of the sLTC with LTS simplification, as illustrated in Sec-
tion 6.1.

Bad activities. The bad activities are the activities triggered when timeout occurs.
For the running example SMIS, it is a reply activity that reports the user on the time-
out of a composite service. As an additional example, it could also be an invocation
activity to log the timeout event upon the timeout of a composite service. With the
rule of thumb that a bad activity is always triggered upon the timeout of a composite
service, identifying a bad activity would become an easy task; devising techniques for
(semi-)automating this task is left as future work. On the other hand, specifying bad
activities is not mandatory. If the user cannot identify a bad activity in the composite
service, (s)he has the option not to specify any. Doing so, all activities in the compos-
ite service are treated as good activities. This implies that the synthesized constraints
only provide the following guarantee: any possible complete run of the composite ser-
vice is able to satisfy the global time requirement upon completion. It does not consider
the situation where the execution of a complete run could directly lead to the violation
of the global time requirement, e. g., the complete run that contains s0, s2, and s4 in
Fig. 10.

7. EVALUATION
In this section, we apply our method to several case studies. First, we briefly present
our implementation (Section 7.1). Then, we describe the case studies we use (Sec-
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tion 7.2). Then, we evaluate our method for the synthesis of local time requirement
at the design time (Section 7.3). And last, we focus on the evaluation of the runtime
adaptation of a composite service (Section 7.4).

7.1. Implementation
We have implemented our algorithms for synthesizing sLTC and rLTC (viz., synthSLTC
and synthRLTC) in SELAMAT, a tool developed in C]. The tool and case studies that will
be described in Section 7.2 can be downloaded at [Tan et al. 2015]. The simplification
of the final results of sLTC and rLTC is achieved using Microsoft Z3 [de Moura and
Bjørner 2008]. For the runtime adaptation, we make use of Apache ODE 1.3.6 as run-
time engine module (RE). The service monitoring module (SM) is developed in C],
which uses Microsoft Z3 for the satisfiability checking.

7.2. Case Studies
Stock Market Indices Service (SMIS). This is the running example introduced in

Section 3.

Computer Purchasing Services (CPS). The goal of a CPS (such as Dell.com) is to al-
low a user to purchase a computer system online using credit cards. Our CPS makes
use of five component services, namely Shipping Service (SS), Logistic Service (LS), In-
ventory Service (IS), Manufacture Service (MS), and Billing Service (BS). The global
time requirement of the CPS is to respond within three seconds. The CPS workflow
is shown in Fig. 16. The CPS starts upon receiving the purchase request from the
client with credit card information, and the CPS spawns three workflows (viz., ship-
ping workflow, billing workflow, and manufacture workflow) concurrently. In the ship-
ping workflow, the shipping service provider is invoked synchronously for the shipping
service on computer systems. Upon receiving the reply, LS (which is a service provided
by the internal logistic department) is invoked synchronously to record the shipping
schedule. In the billing workflow, the billing service (which is offered by a third party
merchant) is invoked synchronously for billing the customer with credit card infor-
mation. In the manufacture workflow, IS is invoked synchronously to check for the
availability of the goods. Subsequently, MS is invoked asynchronously to update the
manufacture department regarding the current inventory stock. Upon receiving the
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reply message from LS and BS, the result of the computer purchasing will be returned
to the user.

Travel Booking Service (TBS). The goal of a travel booking service (TBS) (such as
Booking.com) is to provide a combined flight and hotel booking service by integrat-
ing two independent existing services. TBS provides an SLA for its subscribed users,
saying that it must respond within five seconds upon request. The travel booking sys-
tem has four component services, namely Flight Service (FS), Backup Flight Service
(FSbak), Hotel Service (HS) and Backup Hotel Service (HSbak). The TBS workflow is
given in Fig. 17. Upon receiving the request from users, the variable res is assigned to
true. After that, TBS spawns two workflows (viz., a flight request workflow, and a ho-
tel request workflow) concurrently. In the flight request workflow, it starts by invoking
FS, which is a service provided by a flight service booking agent. If service FS does not
respond within two seconds, then FS is abandoned, and another backup flight service
FSbak is invoked. If FSbak returns within one second, then the workflow is completed;
otherwise the variable res is assigned to false. The hotel request workflow shares the
same process as the flight request workflow, by replacing FS with HS and FSbak with
HSbak. The booking result will be replied to the user if res is true; otherwise, the user
will be informed of the booking failure.

Rescue Team Service (RS). The goal of a Rescue Team service (RS) is to identify
the place, weather, and nearest rescue team, by the longitude and latitude on Earth.
RS makes use of three component services, namely Terra Service (TS), Weather Ser-
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vice (WS) and Distance Service (DS). The global requirement of the RS is to respond
within five seconds. The RS workflow is given in Fig. 18. RS starts upon receiving lon-
gitude and latitude coordinates from the user. After that, it invokes Terra Service (TS),
Weather Service (WS), and Distance Service (DS) concurrently. Service TS (resp. WS)
will return the name of the place (resp. the weather information) that corresponds to
the longitude and latitude. DS is used to calculate the distance between each rescue
team and the event location. In particular, DScom and DSsea are used to calculate the
distance between commander team and sergeant team to the event location. If the dis-
tance to the event of the commander team (dcom) is not larger than the distance to the
event of the sergeant team (dsea), then the commander team will be chosen. Otherwise,
the sergeant team will be chosen. Subsequently, the place, weather and rescue team
information is returned to the user.

7.3. Synthesis of Local Time Requirement
7.3.1. Environment of the Experiments. We synthesize the sLTC and rLTC for four case

studies on a system using Intel Core I5 2410M CPU with 4 GiB RAM.

7.3.2. Evaluation Results. The details of the synthesis are shown in Table I. The
#states and #transitions columns provide the information of number of states and
transitions of the LTS, respectively. We repeated all experiments 30 times; we report
here the average time for each experiment. The sLTC and rLTC columns provide the
average time (in seconds) spent for synthesizing sLTC (for the entire LTS), and rLTC
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Case Studies #states #transitions sLTC (s) rLTC (s)
SMIS 14 13 0.0076 0.0078
TBS 683 3677 1.8501 1.9000
CPS 120 119 0.0529 0.0559
RS 85 134 0.0701 0.0733

Table I: Synthesis for sLTC and rLTC

Case Studies #states #transitions sLTC (s)
SMIS 17 16 0.0090
TBS 938 4614 1.9811
CPS 144 143 0.0626
RS 117 166 0.0740

Table II: Synthesis for sLTC based on [Tan et al. 2013]

(for each state in the LTS), respectively. TBS takes a longer time than SMIS, CPS, and
RS for synthesizing sLTC and rLTC, as it contains a larger number of states and tran-
sitions compared to SMIS, CPS, and RS. Nevertheless, since both sLTC and rLTC are
synthesized offline, the time for synthesizing the constraints (around one second) for
TBS is considered to be reasonable.

The main overhead on synthesizing sLTC and rLTC is due to the calculation of the
constraint component C of each new state s = (v,P,C,D). Calculation of a constraint
component C′ is required for each transition in the LTS, in order to create the successor
state s′ = (v′,P′,C′,D′). If two created states s, s′ in the LTS are found to be equal,
they will be merged into a single state. Therefore, the number of transitions will have
a greater effect than the number of states on the time spent for synthesizing sLTC and
rLTC.

For comparison with [Tan et al. 2013], we also provided the information of synthesis
of sLTC based on [Tan et al. 2013] in Table II (sLTC is given in seconds). The additional
“and/or states” (used in [Tan et al. 2013] for synthesizing the sLTC) yield an increased
number of both states and transitions. As a consequence, this yields an increased time
for synthesizing the sLTC, for all case studies.

The synthesized sLTC for SMIS is shown in Fig. 13, while the synthesized sLTC for
CPS, TBS, and RS are shown in Fig. 19. All the sLTC are simplified and in DNF form.
It is worth noting that the sLTC of CPS and RS can be represented in one line repre-
sentation (i. e., only one inequality) after simplification. Note that tMS does not appear
in the sLTC of CPS. The reason is that MS is invoked asynchronously without expect-
ing a response; therefore its response time is irrelevant to the global time requirement
of CPS.

The synthesized rLTC are used for runtime adaptation during runtime. We evaluate
the runtime adaptation of a composite service with rLTC in the following section.

7.4. Runtime Adaptation
We now conduct experiment to evaluate the overhead of the runtime adaptation and
the improvement caused by the runtime adaptation on the conformance of the global
time requirement. Specifically, we attempt to answer the following questions.
Q1. What is the overhead of the runtime adaptation?
Q2. What is the improvement provided by the runtime adaptation?
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Fig. 19: Synthesized sLTC

Case Studies Avg. #SAT Avg. SAT runtime (s)
SMIS 1.74 13
TBS 2.25 17
CPS 4.00 27
RS 4.00 19

Table III: Satisfiability checking

7.4.1. Environment of the Experiments. The evaluation was conducted using two dif-
ferent physical machines, connected by a 100 Mbit LAN. One machine is running
ApacheODE [Foundation 2007] to host the RE module to execute the BPEL program,
configured with Intel Core I5 2410M CPU with 4GiB RAM. The other machine hosts
the SM module, configured with Intel I7 3520M CPU with 8GiB RAM.

To test the composite service under controlled situation, we introduce the notion
of execution configuration. An execution configuration defines a particular execution
scenario for the composite service. Formally, an execution configuration E is a tuple
(M,R), where M decides which path to choose for an <if> activity and R is a func-
tion that maps a component service Si to a real value r ∈ R≥0, which represents the
response time of service si. We discuss how an execution configuration E = (M,R) is
generated. M is generated by choosing one of the branches of an <if> activity uni-
formly among all possible branches.

Let CS be a composite service, where a component service Si of CS has a stipulated
response time vi ∈ R≥0. Then R(Si) will be assigned with a response time within the
stipulated response time vi with a probability of pc ∈ R≥0∩ [0, 1]. pc is the response time
conformance threshold. More specifically, R(Si) will be assigned with a value in [0, vi]
uniformly with a probability of pc, and assigned to a value in (vi, vi + te] uniformly with
a probability of 1 − pc. te ∈ R≥0 is the exceeding threshold; and assume after vi + te
seconds, the component service Si will be automatically timeout by RE to prevent an
infinite delay.

Given a composite service CS, and an execution configuration E, a run is denoted
by r(CS,AM,E), where the first argument is the composite service CS that is running,
the second argument AM ∈ {rr,∅} is the adaptive mechanism where rr denotes the
runtime adaptation, and ∅ denotes no runtime adaptation. Two runs r(CS,AM,E) and
r(CS′,AM′,E′) are equal if CS = CS′, AM = AM′ and E = E′. Note that all equal runs
have the same execution paths and response times for all service invocations.

We use two kinds of instrumentation for runtime engines used for adaptive and non-
adaptive runs, respectively. For both adaptive and non-adaptive runs, we instrument
both runtime engines to execute conditional statements based on M. For adaptive runs
only, we instrument the runtime engine according to Section 6.2.
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pc Nse Ne Improvement (%) Avg. Backup Service

SMIS

0.9 9441 8976 5.18 0.127
0.8 9211 8374 10.00 0.352
0.7 8109 6965 16.42 0.577
0.6 7593 6348 19.61 0.702

TBS

0.9 10000 9743 2.64 0.384
0.8 10000 9364 6.79 0.779
0.7 10000 8460 18.20 0.948
0.6 10000 7700 29.87 1.05

CPS

0.9 9523 8809 8.11 1.259
0.8 9241 7156 29.14 1.509
0.7 8504 6108 39.23 2.014
0.6 8430 5650 49.20 2.578

RS

0.9 8181 7271 12.52 1.787
0.8 7201 7011 2.71 1.589
0.7 6590 5227 26.08 1.659
0.6 5609 4146 35.29 1.54

Table IV: Improvement of runtime conformance

7.4.2. Evaluation Results. We conducted two experiments Exp1 and Exp2, to answer
the research questions Q1 and Q2, respectively. Each experiment goes through 10,000
rounds of simulation, and an execution configuration E is generated for each round
of simulation. Given a composite service CS, we assume that for each component ser-
vice Si with a stipulated response time vi, there exists a backup service S′i, with a
stipulated response time vi/2 and a conformance threshold of 1. Suppose that before
the invocation of a component service Si, CS is at active state sa. The satisfiability of
the rLTC at sa will be checked using Algorithm 4 before Si is invoked. If it is satisfi-
able, then it will invoke Si as usual. Otherwise, as an mitigation procedure, the faster
backup service S′i will be invoked instead.

We now describe both experiments Exp1 and Exp2.

Experiment Exp1. Given a composite service CS, in order to measure the overhead,
we use an execution configuration E = (M,Q) for an adaptive run r(CS, rr,E), and non-
adaptive run r(CS,∅,E). We have modified the runtime adaptation mechanism for rr
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such that, if the rLTC of the active state is checked to be unsatisfiable, component
service Si will still be used (instead of S′i). The purpose for this modification is to make
r(CS, rr,E) and r(CS,∅,E) invoke the same set of component services, so that we can
effectively compare the overhead of r(CS, rr,E).

Results. Suppose at round k, the times spent for r(CS, rr,E) and r(CS,∅,E) are rk
rr ∈

R≥0 time units and rk
∅ ∈ R≥0 time units respectively. The overhead Ok at round k is

the time difference between rk
rr and rk

∅, i. e., Ok = rk
rr − rk

∅. The average overhead at
round k is calculated using Equation 1.

Average overhead = (

k∑
i=1

Oi)/k (1)

The main source of overhead for runtime adaptation comes from the satisfiabil-
ity checking with Algorithm 4. We make use of the state-of-the-art SMT solver
Z3 [de Moura and Bjørner 2008] for this purpose. Other sources of overhead include
update of active state in SM, and communications between SM and RE.

The experiment results can be found in Fig. 20. The average overheads of SMIS, CPS,
TBS, and RS after 10,000 rounds are 15 ms, 21 ms, 30 ms, and 23 ms respectively. The
results convey to us that the additional operations involved in the runtime adaptation,
including the satisfiability checking, can be done efficiently.

We further evaluate the overhead on satisfiability checking. Table III shows the re-
sults of satisfiability checking. The average number of satisfiability checking for each
round (Avg. #SAT) is calculated using Equation 2 where Ni is the total number of sat-
isfiability checking for i-th round and r is the total number of running rounds. The
average time (given in milliseconds) spent on satisfiability checking for each round
(Avg. SAT runtime) is calculated using Equation 3, where Ti is the time spent on sat-
isfiability checking for i-th round. Table III shows that the satisfiability checking has
contributed most of the overhead of runtime adaptation.

Average #SAT = (

r∑
i=1

Ni)/r (2)

Avg. SAT runtime = (

r∑
i=1

Ti)/r (3)

Experiment Exp2. In this second experiment, we measure the improvement for the
conformance of global constraints due to rr. Given a composite service CS, an execution
configuration E, two runs r(CS, rr,E) and r(CS,∅,E) are conducted for each round of
simulation. Nse is the number of executions that satisfy global constraints for compos-
ite service with rr, and Ne is the number of executions that satisfy global constraints
for composite service without rr, the improvement is calculated by Equation 4.

Improvement =
(Nse −Ne) ∗ 100

Ne
(4)

Results. The experiment results can be found in Table IV. The Improvement (%)
column provides the information of improvement (in percentage) that is calculated
using Equation 4. The Avg. Backup Service column provides the average number of
backup service used (calculated by summing the number of backup services used for
10,000 rounds, and divided by 10,000).
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The decrement of pc represents the undesired situation where component services
have a higher chance for not conforming to their stipulated response time. This may be
due to situations such as poor network conditions. For each example, the improvement
provided by the runtime adaptation increases when pc decreases. This shows that run-
time adaptation improves the conformance of global time requirement. In addition, the
average number of backup service used increases when pc decreases. This shows the
adaptive nature of runtime adaptation with respect to different pc – more corrective
actions are likely to perform when the chances that component services do not satisfy
their stipulated response time increase.

Answer to Research Questions. The results in Exp1 and Exp2 have shown that the
runtime adaptation has a low overhead, and improves the runtime conformance, es-
pecially when the response time conformance threshold of the component services is
low.

7.5. Threats to Validity
There are several threats to validity. The first threat to validity is due to the fact that
we assume a uniform distribution of response time for evaluation of runtime adap-
tation. To address this issue, more experimentations with real-world services should
be performed. This said, our experiments on case studies provide a first idea that our
assumptions are realistic.

The second threat to validity is stemmed from our choice to use a few example
values as experimental parameters, that include global constraints and termination
thresholds, in order to cope with the combinatorial explosion of options. To resolve this
problem, it is clear that even more experimentations with different case studies and
experimental parameters should be performed, so that we could further investigate
the effects that have not been made obvious by our case studies and experimental
parameters.

8. RELATED WORK
Constraint synthesis for scheduling problems. Our work shares common techniques

with work for constraint synthesis for scheduling problems. The use of models such
as parametric timed automata (PTAs) [Alur et al. 1993] and parametric time Petri
nets (PTPNs) [Traonouez et al. 2009] for solving such problems has received recent
attention. In particular, in [Cimatti et al. 2008; Le et al. 2010; Fribourg et al. 2012],
parametric constraints are inferred, guaranteeing the feasibility of a schedule using
PTAs extended with stopwatches (see, e. g., [Adbeddaïm and Maler 2002]). In [André
et al. 2014], we proposed a parametric, timed extension of CSP, to which we extended
the “inverse method”, a parameter synthesis algorithms preserving the discrete be-
havior of the system (see, e. g., [André and Soulat 2013]). Although PTAs or PTPNs
might have been used to encode (part of) the BPEL language, our work is specifically
adapted and optimized for synthesizing local timing constraint in the area of service
composition.

Analysis with LTSs in Web services. Our method is related to using LTSs for analysis
purpose in Web services. In [Bianculli et al. 2011], the authors propose an approach to
obtain behavioral interfaces in the form of LTSs of external services by decomposing
the global interface specification. It also has been used in model checking the safety
and liveness properties of BPEL services. For example, Foster et al. [Foster 2006; Fos-
ter et al. 2006] transform BPEL process into FSP [Magee and Kramer 2006], subse-
quently using a tool named “WS-Engineer” for checking safety and liveness properties.
Simmonds et al. [Simmonds et al. 2010] propose a user-guided recovery framework for
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Web services based on LTSs. Our work uses LTSs in synthesizing local time require-
ment.

Finding suitable quality of service for the system. Our method is related to the find-
ing of a suitable quality of service (QoS) for the system [Yu et al. 2007]. The authors
of [Yu et al. 2007] propose two models for the QoS-based service composition prob-
lem: a combinatorial model and a graph model. The combinatorial model defines the
problem as a multidimension multichoice 0-1 knapsack problem. The graph model de-
fines the problem as a multiconstraint optimal path problem. A heuristic algorithm is
proposed for each model: the WS-HEU algorithm for the combinatorial model and the
MCSP-K algorithm for the graph model. The authors of [Ardagna and Pernici 2005]
model the service composition problem as a mixed integer linear problem where con-
straints of global and local component service can be specified. The difference with our
work is that, in their work, the local constraint is specified, whereas in ours, the lo-
cal constraint is synthesized. An approach of decomposing the global QoS to local QoS
has been proposed in [Alrifai and Risse 2009]. It uses the mixed integer programming
(MIP) to find optimal decomposition of QoS constraint. However, the approach only
concerns simple sequential composition of Web services method call, without consider-
ing complex control flows and timing requirements.

Response time estimation. Our approach is also related to response time estimation.
In [Kraft et al. 2009], the authors propose to use linear regression method and a max-
imum likelihood technique for estimating the service demands of requests based on
their response times. [Menascé 2004] has also discussed the impact of slow services
on the overall response time on a transaction that use several services concurrently.
Our work is focused on decomposing the global requirement into local requirement,
which is orthogonal to these works. Our recent work [Li et al. 2014] complements with
this work by proposing a method on building LTCs that under-approximate the sLTC
of a composite service. The under-approximated LTCs consisting of independent con-
straints over components, which can be used to improve the design, monitoring and
repair of component-based systems under time requirements.

Service monitoring. Our method is related to service monitoring. Moser et al. [Moser
et al. 2008] present VieDAME, a non-intrusive approach to monitoring. VieDAME
allows monitoring of BPEL composite service on quality of service attributes, and
existing component services are replaced based on different replacement strategies.
They make use of the aspect-oriented approach (AOP); therefore the VieDAME en-
gine adapter could be interwoven into the BPEL runtime engine at runtime. Baresi
et al. [Baresi and Guinea 2011] propose an idea of self-supervising BPEL processes by
supporting both service monitoring and recovery for BPEL processes. They propose the
use of Web Service Constraint Language (WSCoL) to specify the monitoring directives
to indicate properties need to be hold during the runtime of composite service. They
also make use of the AOP approach to integrate their monitoring adapters with the
BPEL runtime engine. Our work is orthogonal to the aforementioned works, as we do
not assume any particular service monitoring framework for monitoring the composite
service, and those methods can be used to aid the monitoring approach, as discussed
in Section 6.2. Our previous work [Tan et al. 2014] proposes an automated approach
based on a genetic algorithm to calculate the recovery plan that can guarantee the
satisfaction of functional properties of the composite service after recovery.

Verification of services. Concerning verification of services, Filieri et al. [Filieri et al.
2011] focus on checking the reliability of component (service)-based systems. They
make use of Discrete Time Markov Chain (DTMC) to check the reliability of models
at runtime. Our previous works [Chen et al. 2013; Chen et al. 2014] develop a tool to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 T. H. Tan, É. André, M. M. Chen, J. Sun, Y. Liu, J. S. Dong and L. Yuan

verify combined functional and non-functional requirements of Web service composi-
tion. In contrast, the current work focuses on response time: given the global response
time of the composite service, we synthesize the response time requirement for com-
ponent services at design time and refine it at runtime. Schmieders et al. [Schmieders
and Metzger 2011] proposed the SPADE approach. SPADE invokes the BOGOR model
checker to model check the SLAs at design time and at runtime. Our work is differ-
ent from theirs in two aspects. First, we focus on the synthesis of the local time re-
quirement, which is a formal requirement on the response time requirement of compo-
nent services. Second, during runtime, [Schmieders and Metzger 2011] performs model
checking on a given state to check whether an adaptation is needed. In contrast, we
have precomputed the constraints for every state at design time. Therefore, we only
require evaluation of constraints by substituting the free variables during runtime,
and this allows a more efficient runtime-analysis.

9. CONCLUSION AND FUTURE WORKS
Conclusion. We have presented a novel technique for synthesizing local time con-

straints for the component services of a composite service CS, knowing its global time
requirement. Our approach is based on the analysis of the LTS of a composite ser-
vice by making use of parameterized timed techniques. The local time constraint can
guarantee the the satisfaction of the global response time requirement. Our proposed
techniques consist of static and dynamic checking of global time requirement based on
the sLTC and rLTC of component services respectively.

During design time of a composite service, we propose a synthesis algorithm, that
utilizes the parametric constraints from the LTS, to synthesize static local time con-
straint (sLTC) for component services. The sLTC is then used to select a set of com-
ponent services that could collectively satisfy the global time requirement in design
time.

Then, during the runtime of a composite service, we propose the usage of the run-
time information to weaken the sLTC, which becomes the refined local time constraint
(rLTC). In particular, two pieces of runtime information have been leveraged – the ex-
ecution path that has been taken by the composite service, and the elapsed time of the
composite service. The rLTC is then used to validate whether the composite service
can still satisfy the global time requirement at runtime. We have implemented the
approach into a tool SELAMAT, and applied it to four case studies.

Our experiments show that the computation time is always smaller than our previ-
ous approach [Tan et al. 2013], and that the runtime refinement leads to an improve-
ment of the global time requirement, while limiting the overhead.

Future works. We plan to further improve and develop the technique presented in
this paper.

First, we would like to benefit from optimizations techniques developed for other
formalisms such as timed automata and parametric timed automata, such as convex
state merging [André et al. 2013], and adapt them to our setting.

Second, we will investigate the usage of soft deadlines that allow to run a service
with a delay, possibly with an acceptable penalty.

Our work so far deals with exact response times. A different approach would be to
consider that the response time should be fulfilled with some probability. In that set-
ting, the goal would be to synthesize the values for the timing parameters such that
the response time is indeed below the threshold with a given probability. To achieve
this, we could reuse recent works involving probabilities and timing parameters (e. g.,
[Jovanović and Kwiatkowska 2014; Ceska et al. 2014]). Even more challenging would
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be to combine both kinds of parameters (timing parameters and probabilistic parame-
ters), so as to infer the probability under which the response time can be fulfilled.

The construction of the LTS of a BPEL process is so far achieved in our implemen-
tation on a monocore computer (or in fact on a multicore computer but using a single
core). Extending this construction to multicore computers while performing parameter
synthesis would be challenging. A parallel algorithm for Büchi emptiness checking in
timed automata, proposed in [Laarman et al. 2013], could be extended to BPEL and to
the parametric case.

Finally, we could extend our current approach to other domains that share similar
problems, for example wireless sensor networks [Pottie and Kaiser 2000].
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