
Service Adaptation with Probabilistic Partial Models?

Manman Chen1, Tian Huat Tan1 Jun Sun1, Jingyi Wang1, Yang Liu2, Jing Sun3, and
Jin Song Dong4

1 Singapore University of Technology and Design
2 Nanyang Technological University

3 The University of Auckland
4 National University of Singapore

Abstract. Web service composition makes use of existing Web services to build
complex business processes. Non-functional requirements are crucial for the Web
service composition. In order to satisfy non-functional requirements when com-
posing a Web service, one needs to rely on the estimated quality of the component
services. However, estimation is seldom accurate especially in the dynamic envi-
ronment. Hence, we propose a framework, ADFLOW, to monitor and adapt the
workflow of the Web service composition when necessary to maximize its ability
to satisfy the non-functional requirements automatically. To reduce the monitor-
ing overhead, ADFLOW relies on asynchronous monitoring. ADFLOW has been
implemented and the evaluation has shown the effectiveness and efficiency of our
approach. Given a composite service, ADFLOW achieves 25% – 32% of average
improvement in the conformance of non-functional requirements, and only incurs
1% – 3% of overhead with respect to the execution time.

1 Introduction
Service Oriented Architecture (SOA) is emerging as a methodology for building Web
applications by using of existing Web services from different enterprises as compo-
nents. Web services provide an affordable and adaptable framework that can produce a
significantly lower cost of ownership for the enterprises over time. Web services make
use of open standards, such as WSDL [8] and SOAP [14], which enable the interaction
among heterogeneous applications.

The Web service composed by Web service composition is called a composite ser-
vice (e.g., Travel Agency service) and the Web services that constitute the composite
service are called component services (e.g., American Airline booking service). Non-
functional requirements are an important class of requirements for Web services. They
are concerned with quality of service (QoS) (e.g., response time, availability, cost) of
Web services. The non-functional requirements are often an important clause in service-
level agreements (SLAs), which is the contractual basis between service consumers and
service providers on the expected QoS level. For example, nowadays, many big players
in the market (e.g., Netflix, Amazon, and Microsoft Azure) have adopted microservice
architecture [2]. It works by decomposing their existing monolithic applications into
smaller, and highly decoupled services (also known as microservices). These microser-
vices are then composed to fulfill their business requirements. For example, Netflix
decomposed their monolithic DVD rental application into microservices that work to-
gether, and then stream digital entertainment to millions of Netflix customers every day.
? This work is supported by research project T2MOE1303.

In this work, the requirements of QoS for the composite service can be specified
as global constraints. For example, an example of the global constraint is that the re-
sponse time of the Web service composition must be less than 8 ms. To guarantee the
SLAs between the Web service composition and its users, the design of Web service
composition involves the estimation of QoS of component services. The QoS of com-
ponent services could be solicited from the providers of component services either in
the form of SLAs or based on past history of executions by making use of existing
approaches (e.g., KAMI [9]).

However, due to the highly evolving and dynamic environment that the Web ser-
vice composition is running, the design time assumptions for Web service composition,
even if they are initially accurate, may later change during runtime. For example, the
execution time of a component service may increase unexpectedly due to reasons such
as network congestion, which could affect the response time of the composite service.
Furthermore, at runtime, the non-functional properties of a composite service rely on
the behaviors of component services offered by third-party partners. The distributed
ownership makes the non-functional properties of Web service composition subject to
changes. For instance, component service providers could modify existing component
Web services, and usage profiles of the component Web services may change over time.
These behaviors may result in potential violations of SLA of the composite Web ser-
vice. Since estimations are seldom accurate, it is desirable that Web service composi-
tions could dynamically adapt themselves to their environment with little or no human
intervention in order to meet the guaranteed QoS levels. The loose coupling and binding
features of SOA systems make them particularly suitable for runtime adaptation.

Existing works [5,17,18,15] address this problem by replacing component services
or invoke component services adaptively, which we denote it as point adaptation strat-
egy. Point adaptation strategy suffers several disadvantages. First, there are cases where
such a strategy does not work. For example, there is no alternate service that can sat-
isfy the non-functional requirements. In addition, there might not exist an alternating
service that could be switched directly. Secondly, there maybe incur much cost as they
may invoke another service to compensate it.

In this work, we propose the usage of workflow adaptation strategy to address this
issue. A workflow adaptation strategy involves modifying the workflow to find a path
for execution that can maximize the ability to satisfy the non-functional requirements.
Therefore, we present runtime ADaptation framework based on workFlow (ADFLOW),
a framework to alleviate the management problem of complex Web compositions that
operate in rapidly changing environments. We propose the notion of probabilistic par-
tial model, which is extended from the previous notion of partial model [11], to capture
the uncertainties of system execution with probabilistic. The global constraints of the
composite service are decomposed into local requirements for each state of a proba-
bilistic partial model. When a possible violation of the global constraints is detected,
adaptive actions are taken preemptively based on the probabilistic partial model, to
avoid unsatisfactory behaviors or failures. In particular, the adaptive action chooses the
execution that could maximize the likelihood of conformance of the global constraints.

Our contributions are summarized as follows.

2

1. We propose the probabilistic partial model to capture the runtime uncertainties of
Web service composition.

2. We propose a runtime adaptation framework, ADFLOW for Web service composi-
tion. ADFLOW monitors the execution of Web service composition based on local
requirements of the probabilistic partial model. If a possible violation of the global
constraints of the composite service is detected, adaptive actions would be taken
preemptively to prevent the violation.

3. To reduce the monitoring overhead, we propose to use asynchronous monitoring
where the execution status is monitored asynchronously whenever possible. We
show that this approach reduces the overhead significantly.

4. We have evaluated our method on real-world case studies, and we show that it
significantly improves the chance of the composite service to conform to the global
constraints.

Outline The rest of paper is structured as follows. Section 2 describes a motivat-
ing example. Section 3 introduces the probabilistic partial model used for Web service
compositions. Section 4 presents our ADFLOW adaptation framework for runtime adap-
tation. Section 5 evaluates the performance of our approach in several scenarios with
the increasing complexity. Section 6 discusses related work. Section 7 concludes the
paper and describes future work.

2 Motivating Example
In this work, we introduce four elementary compositional structures for composing the
component services, i.e., the sequential (〈sequence〉), parallel (〈flow〉), loop (〈while〉)
and conditional (〈if〉) compositions, which are all the essential structures of many pro-
gramming languages; therefore, our work can be applied to other languages potentially.
In addition, there are three basic activities to communicate with component services,
i.e., receive (〈receive〉), reply (〈reply〉), and invocation (〈invoke〉) activities. The
〈receive〉 and 〈reply〉 activities are used to receive requests from and reply results to
the users of the composite service respectively. The 〈invoke〉 activity is used to invoke
component services for their functionalities. There are two kinds of 〈invoke〉 activities,
i.e., synchronous and asynchronous 〈invoke〉 activities. The synchronous 〈invoke〉
activity invokes the component service and wait for the reply, while the asynchronous
〈invoke〉 activity moves on after the invocation without waiting for the reply.

2.1 Running Example – Travel Booking Service

In this section, we introduce the Travel Booking Service (TBS) as a running example
in this work. TBS is designed for providing a combined budget flight and hotel book-
ing composite service by incorporating with several existing component services. The
workflow of TBS is sketched in Figure 1a.

TBS has five component Web services, namely a flight searching service (FS), three
budget flight booking services (BF1,BF2 andBF3), and a hotel booking service (HB).
Upon receiving the request from the customer (Receive User), a 〈flow〉 activity (de-
noted as) is triggered, and Invoke FS and Invoke HB are executed concurrently;
Invoke HB invokes the HB service to book the hotel (All invocation activities in this
work are assumed to be synchronous, unless otherwise stated). Invoke FS invokes the
FS service to search for budget flights. Upon receiving the reply from the FS service,

3

Receive User

Invoke HB

Invoke FS

Invoke BF3Invoke BF1 Invoke BF2

Reply User

g1 g2

(a) Travel Booking Service (TBS)

QoS Attribute FS HB BF1 BF2 BF3

Response Time (ms) 300 200 300 200 100

Availability 1 1 0.95 0.9 0.95

Cost ($) 2 1 2 2 1

(b) QoS for component services of TBS

a conditional activity (denoted as) is followed. If the ticket price of BF1 is the low-
est (represented by the guard condition g1), BF1 is invoked (Invoke BF1) to book the
flight ticket. If the ticket price of BF2 is the lowest (represented by the guard condition
g2), then BF2 is invoked (Invoke BF2) to book the ticket. Otherwise, BF3 is invoked
to book the ticket (Invoke BF3). Upon completion of the concurrent activities, TBS
replies the user with a booking confirmation message (Reply User).

TBS provides an SLA for their service consumers such that it must respond within
600 ms upon any request with at least 95% availability. The cost per invocation of TBS
is 8 dollars – therefore TBS service provider needs to ensure it does not spend more
than 8 dollars for its component services.

Now, let us consider a scenario where the flight searching service takes 500 ms.
Classic point adaptation strategy may switch some service to an alternating service
[5,17,18,15], which has been mentioned in the introduction, as it involves retrying or
switching of a particular service. There are cases where such a strategy does not work.
For example, there is no alternate service that can satisfy the non-functional require-
ments. In addition, there might not exist an alternating service that could be switched
directly. In such a case, our workflow adaptation strategy, could be used.

2.2 Service Composition Notations

We use the syntax below to specify the workflow of a service composition succinctly.

– P1;P2 and P1|||P2 are used to denote sequential and concurrent executions of the
activities P1 and P2 respectively.

– C([g1]P1, [g2]P2, · · · , [gn]Pn, P0) is used to denote the conditional activity, where
gi is a guard with i ∈ {1, 2, · · · , n}. The guards are evaluated sequentially from g0
to gn, and activity Pi is executed for the first gi that is evaluated to true. If all the
guards are evaluated to false, the activity P0 is executed.

– sInv(P) and aInv(P) are used to denote the synchronous and asynchronous in-
vocations respectively of the activity P .

– pick(S1⇒P1, S2⇒P2) is used to denote the pick activity, which contains two
branches of onMessage activities where exactly one branch would be executed.
Activity P1 is activated when the message from the component service S1 is re-
ceived, while activity P2 is activated if the message from the component service S2

is received.

4

QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

Availability
n∏

i=1

q(si)
n∏

i=1

q(si) (q(s1))
k

n∑
i=1

pi ∗ q(si)

Cost
n∑

i=1

q(si)
n∑

i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

Table 1: Aggregation function

The process description of TBS, PTBS is shown in Figure 2a. The numbers annotated
to each activity will be introduced in our technical report [3].

3 Preliminaries
In this section, we introduce various notions used in this work. A composite service CS
is constructed using a finite number of component services. We use SCS=〈s1, s2, ..., sn〉
to denote the set of all component services used in CS.

3.1 QoS Attributes

In this work, we use three QoS attributes, i.e., response time, availability and cost as
examples to demonstrate our approach. The response time r ∈ R≥0 of a service is de-
fined as the delay between sending the request to the service and receiving the response
from it. The availability a ∈ R ∩ [0, 1] of a service is the probability of the service
being available. The cost of a service is the price that incurs by invoking the service.
We use R(a), A(a) and C (a) to denote the response time, availability and cost of the
activity a respectively. Table 1b lists QoS values for component services of TBS, that
will be used in the subsequent sections. There are two kinds of QoS attributes, posi-
tive and negative ones. Positive attributes, e.g., availability, provide good effect on the
QoS; therefore, they need to be maximized. While negative attributes, e.g., response
time and cost, need to be minimized. Our QoS attributes could be addressed similarly
as these three QoS attributes. For example, reliability could be handled in the same way
as availability.

3.2 QoS for Composite Services

The values of QoS attributes for composite service CS are aggregated from each com-
ponent service based on internal compositional structures. There are four types of com-
positional structures: sequential, parallel, loop and conditional compositional structures.
Table 1 shows the aggregation function for each compositional structure. In the parallel
composition, the response time is the maximum one among response times of all partic-
ipating component services since all participating component services execute concur-
rently. In the loop composition, it is aggregated by summing up the response time of the
involved component service for k times where k is the number of maximum iteration of
the loop and it could be inferred by using loop bound analysis tools (e.g., [10]). In the
conditional composition, we use the expected value as the evaluation of guards is not
known at the design time, where qi is the probability for executing the service si.

5

PTBS = {({[sInv(FS)]64;C([g1][sInv(BF1)]
3
3, [g2][sInv(BF2)]

2
2, [sInv(BF3)]

1
1)

3
1}64|||[sInv(HB)]22)

6
4; [reply]

0
0}64

(a) Process Description of TBS
s0:(S,< (64), (

0.9
0.95), (

5
4) >)

s1:(P1, < (22), (
0.9
0.95), (

3
2) >) s2:(P2, < (64), (

0.9
0.95), (

4
3) >)

s3:(P3, < (33), (
0.95
0.95), (

3
3) >)s4:(P4, < (22), (

0.9
0.9), (

3
3) >)s5:(P5, < (11), (

0.95
0.95), (

2
2) >) s6:(P6, < (31), (

0.9
0.95), (

2
1) >)

s7:(P7, < (22), (
1
1), (

1
1) >) s8:(P8, < (33), (

0.95
0.95), (

2
2) >) s9:(P9, < (22), (

0.9
0.9), (

2
2) >) s10:(P10, < (11), (

0.95
0.95), (

1
1) >)

s11:(reply,< (00), (
1
1), (

0
0) >)

s12:(stop,< (00), (
1
1), (

0
0) >)

sInv(FS) sInv(HB)

sInv(HB)if [g1], p1 elseif [g2], p2 else, p3 sInv(FS)

if [g1], p1 elseif [g2], p2 else, p3sInv(BF1) sInv(BF2) sInv(BF3)

sInv(HB) sInv(BF1) sInv(BF2) sInv(BF3)

reply

where S=(sInv(FS);A)|||(sInv(HB)); reply, P1=A|||sInv(HB); reply, P2=sInv(FS);A; reply, P3=P7|||sInv(BF1); reply,
P4=P7|||sInv(BF2); reply, P5=P7|||sInv(BF3); reply, P6=A; reply, P8=sInv(BF1); reply, P9=sInv(BF2); reply, P10=sInv(BF3);
reply, A=C([g1]sInv(BF1), [g2]sInv(BF2), sInv(BF3)))

(b) Probabilistic Partial Model of TBS
Fig. 2: TBS Example

3.3 Probabilistic Partial Models

Our approach is grounded on probabilistic partial models, which extend partial models
introduced in [11]. In the following, we define various related notions before introduc-
ing the probabilistic partial model.

Definition 1 (State). A state s is a tuple (P, V,Q), where P is a service process, V is a
(partial) variable valuation that maps variables to their values, andQ is a vector which
represents the local estimation of the state s, which will be discussed in Section 4.3. We
introduce the details of local estimation in Section 4.3.

Given a state s = (P, V,Q), we use the notation P (s), V (s), and Q(s) to denote
the process, valuation, and local estimation of the state s respectively. Two states are
said to be equal if and only if they have the same process P , the same valuation V and
the same QoS attribute vector Q.

Definition 2 (Transition System). A transition system is a tuple 〈S, s0, Σ,R〉, where

– S is a set of states; s0 ∈ S is the initial state; Σ is a set of actions
– R ⊆ S ×Σ × S is a transition relation

For convenience, we use s a→ s′ to denote (s, a, s′) ∈ R. Given a state s ∈
S, Enable(s) denotes the set of states reachable from s by one transition, formally,
Enable(s) = {s′|(s′ ∈ S) ∧ (a ∈ Σ) ∧ (s

a→ s′ ∈ R)}. An action a is enabled by s
if there exists a state s′ such that s a→ s′. Act(s) is denoted as the set of actions that
can be triggered from s, formally, Act(s) = {a|(a ∈ Σ) ∧ (s′ ∈ S) ∧ (s

a→ s′ ∈ R)}.
An execution π is a finite alternating sequence of states and actions 〈s0, a1, s1, . . . ,

6

sn−1, an, sn〉, where {s0, . . . , sn} ∈ S and si
ai+1→ si+1 for all 0 ≤ i < n. We denote

the execution π by s0
a1→ s1

...→ sn−1
an→ sn. A state s is reachable if there exists an

execution that starts from the initial state s0 and ends in the state s. A state s is called a
terminal state ifAct(s) is empty. Given an action a ∈ Σ, A(a), R(a) and C(a) denote the
availability, response time and cost of the action a. The transition system is generated
based on the formal semantics of service process described in [12]. Given a composite
service CS, we use T (CS) to denote the transition system of CS.

Definition 3 (Probabilistic Partial Models). A probabilistic partial model is a tuple
〈M,F , Cg,P〉, whereM = 〈S, s0, Σ,R〉 is a transition system, F is a function: S ×
Σ → B, where B is the set {True,False,Maybe}, and Cg = 〈CR

g , C
A
g , C

C
g 〉 is the

global constraints for the model where CR
g (resp., CA

g , CC
g) is the global response time

(resp., availability, cost) constraint. P is a function: S ×Σ → p where p ∈ R ∩ [0, 1].

For convenience, given a composite service CS, we use P(CS) to denote the prob-
abilistic partial model of CS. P(CS) is extended from T (CS) by mapping values (e.g.,
True , or Maybe, 0.5) for transitions on T (CS). We illustrate how the value on tran-
sitions of P(CS) are decided. Given an action a ∈ Act(s), F (s, a) denotes whether
action a ∈ Σ could be executed from state s, P (s, a) provides the probability of ex-
ecuting the action a ∈ Σ at the state s. Clearly, F (s, a) = False and P (s, a) = 0 if
a 6∈ Act(s). F (s, a) = True and P (s, a) = 1 if action a ∈ Act(s) and could always
be executed regardless the valuation of the variables. Otherwise, F (s, a) = Maybe and∑
a∈MAct(s)

P (s, a) = 1 where MAct(s)= {a|a ∈ Act(s)∧ (F(s, a) = Maybe)}. MAct(s)

represents a set of Maybe actions from s, where exactly one of actions a ∈ MAct(s)
would be executed. The execution of a Maybe action depends on the evaluation of the
guard (e.g., 〈if〉 activity), or dependent on the response from other component services
(e.g., 〈pick〉 activity). We also use TAct(s) to denote the set of True actions enabled by
s; formally, TAct(s)= {a|a ∈ Act(s) ∧ (F(s, a) = True)}. For example, actions if [g1],
elseif [g2], and else (with p1, p2 and p3 as their respective probabilities) are Maybe
actions, since the execution of these actions dependent on the evaluation of the guard
conditions. In contrast, actions FS and HB are True actions, since both actions are
triggered concurrently at state s0.

Consider the probabilistic partial model of TBS, P(TBS), as shown in Figure 2b.
Recall that a state is represented as (P, V,Q). Since V = ∅ for all states in P(TBS),
we represent states in P(TBS) as (P,Q) for simplicity. An edge is shown using solid
(resp., dotted) arrow if the triggered action is a True (resp., Maybe) action, and an
edge is labelled with probability if the triggered action is a Maybe action. Since the
probability is 1 if the action is a True action, we omit the 1 in the P(TBS).

4 ADFLOW Framework
In the following, we introduce a framework for supporting self-adaptation based on run-
time information. The goal is to satisfy the system’s global constraints with best efforts.
We first introduce the architecture of the ADFLOW framework based on asynchronous
monitoring. After that, we focus on the local estimation of probabilistic partial model
and demonstrate how it can be used for the runtime adaptation.

7

In the following, Section 4.1 describes the architecture of ADFlow, Section 4.2 in-
troduces the notion of controllability for activities. Section 4.3 introduces calculations
for pessimistic and probabilistic estimation, and then Section 4.4 shows how the frame-
work adaptively chooses an action based on the probabilistic estimation. Section 4.5
presents the asynchronous monitoring technique used in our approach.

4.1 Architecture of ADFlow

The architecture of ADFLOW is shown in Figure 3b. ADFLOW consists of two essential
components: the Runtime Monitor and Adapter (ADAPTER) and the Runtime Execution
Engine (EXECUTOR). The ADAPTER monitors and keeps track of the execution of the
programs using the probabilistic partial model, and provides adaptation if needed based
on the local estimation of the probabilistic partial model. On the other hand, the EX-
ECUTOR provides the environment for the execution of the service programs.

During the deployment of a composite service CS on EXECUTOR, the correspond-
ing probabilistic partial model of CS, P(CS), will be automatically generated (before
the execution of CS), stored and maintained by ADAPTER. As for each action execution
of CS, ADAPTER will update the active state pointer that points to the current execu-
tion state sa ∈ S of P(CS). We call sa the active state of P(CS). During the execution
of CS, for every action performs by the EXECUTOR (e.g., invocation of a component
service), a timer is used to record the duration of the action. Upon completion of the
action, a state update message containing the information of the completed action and
the duration is sent by the EXECUTOR to the ADAPTER, so that ADAPTER could update
the current active state of the probabilistic partial model.

4.2 Controllability of Activity

Controllable activities are the activities that could be controlled by ADAPTER. They
must be the activities that use Maybe actions (i.e., activities 〈if〉 and 〈pick〉). The
reason for not controlling activities using True actions is that, True actions of an active
state would definitely be executed at some point of the execution. Therefore, it will
not provide any improvement for QoS of the composite service by controlling True
actions. For example, consider TBS at the initial state s0 in Figure 2b, the enabled True
actions sInv(FS) and sInv(HB), must be executed at some points for all executions
that start from the initial state s0 and end at the terminal state s12. On the other hand,
for Maybe actions (e.g., if [g1]), they may or may not be executed (e.g., depends on
the evaluation of their guards). Suppose ADAPTER detects the possible violation of the
global constraints, and if the action to be executed next is controllable by ADAPTER,
then ADAPTER could choose an action, that maximizes the chance of satisfying the
global constraints, to be executed by EXECUTOR.

Consider TBS with active state at state s1 in Figure 2b, which has three Maybe
actions, i.e., if [g1], elseif [g2], and else . For an 〈if〉 activity, it is the evaluation of
guard conditions that decides which branch to execute. It is a violation of the semantics
of the 〈if〉 activity if EXECUTOR, simply follows a different action (e.g., elseif [g2])
chosen by ADAPTER, without checking the evaluation of the guard condition. For this
purpose, we extend the 〈if〉 activity with an attribute ctr, so that users are allowed to
specify whether the 〈if〉 activity is controllable by ADAPTER. If ctr is set to true, then
EXECUTOR would send an Adaptation Query message to ADAPTER to consult which

8

s0 sa sn
. . .

r1

r2

rn

rn-1

...

1 second

Global response time requirement: 2

seconds

(a) ADFLOW Example

Runtime Monitor and Adapter

 (Adapter)

State Update Message

(Asynchronous)

messsage

queue

Runtime Execution Engine

(Executor)

Adaptation Query

Message (Synchronous)

<BPEL>

…

<invoke…/>

....

</BPEL>

(b) ADFLOW Architecture

Fig. 3: ADFLOW

action to be executed next. ADAPTER would either select an action to be executed or
decide not to control if there is no potential violation of the global constraints detected,
and then replies to EXECUTOR. If ADAPTER chooses an action, EXECUTOR would
disregard the valuation of guard condition and execute the action that is chosen by
ADAPTER.

Given an activity P , Ctrl(P) ∈ {true, false} denotes the controllability of P ,
which is defined recursively with Equation (1). If P is a sequential activity P1;P2,
the controllability of P is decided on the controllability of process P1. For a concurrent
activity P = P1|||P2, P is controllable if either activity P1 or activity P2 is controllable,
since activities P1 and P2 are triggered at the same time. For conditional activity P =
C([g1]P1, [g2]P2, ...), the controllability is decided by the user-specified controllability
of the conditional activity C.

Ctrl(P)=


Ctrl(P1) if P (s) = P1;P2

Ctrl(P1) ∨ Ctrl(P2) if P (s) = P1|||P2

Ctrl(C) if P (s) = C([g1]P1, [g2]P2, ...)

(1)

4.3 Local Estimation

In this section, we introduce the local estimation and the method to calculate it. The
local estimation of a state s provides an estimation of QoS from two perspectives, pes-
simistic and probabilistic, for all executions starting from state s.
Pessimistic estimation. The pessimistic estimation of a QoS attribute a provides a
conservative estimation of the attribute a for all executions starting from the state s.
For example, the pessimistic estimation of state s for the response time attribute is
the maximum response time that is required for all executions starting from state s.
The pessimistic estimation is used to help ADAPTER to decide whether to take over
the composite service at the active state sa. For example shown in Figure 3a, suppose
the total response time from the initial state s0 to state sa takes 1 second, and the
global constraints for the response time is 2 seconds. If the pessimistic estimation of
the response time at state sa is r seconds, where r > 1, then the runtime adaptation is
required. The reason is that since 1+ r > 2 seconds, there exists an execution path that
could violate the global constraint of the response time.
Probabilistic estimation. The probabilistic estimation of the QoS attribute a provides
the expected value for the attribute a for all possible executions starting from state s.
The probabilistic estimation is used to guide the ADAPTER to choose an action to be
executed next in order to maximize the chances to satisfy the global constraints. The
local estimation Q(s) of a state s is represented by a vector 〈LR(s), LA(s), LC(s)〉,
where LR(s), LA(s) and LC(s) represent the local estimation of response time, avail-

9

ability and cost for the state s respectively. The local estimation of a QoS attribute is
a vector (pepr), where pe, pr ∈ R represent the pessimistic and probabilistic estimation
of the QoS attribute respectively. Henceforth, we denote the pessimistic and probabilis-
tic estimation of the response time of a state s by Lpe

R (s) and Lpr
R (s) respectively. We

define Lpe
A (s), Lpr

A (s), Lpe
C (s), and Lpr

C (s) in a similar manner.
Different QoS attributes might have different aggregation functions for different

compositional structures. For QoS attributes (e.g., cost, availability) that only make
use of summation and multiplication aggregation functions, we only require backward
value propagation (discussed in our technical report [3])for calculating the local estima-
tion. For QoS attributes (e.g., response time) that involve the usage of maximization or
minimization aggregation functions, backward tagging propagation (discussed in our
technical report [3]) need to be applied, before backward value propagation.

4.4 Runtime Adaptation

Given a set of Maybe actions, ADAPTER needs a metric to decide the best action for
execution. The local optimality value of an action a, denoted by L(a) is used to pro-
vide a value that represents the worthiness of choosing the action a. In this section, we
introduce the calculation of local optimality value, and the adaptation algorithm.

Local Optimality Value We first introduce the notion of QoS optimality value of an
action a which will be used for calculation of local optimality value for the action a.

Given a state s, and an action a ∈ MAct(s), the QoS optimality value of the action
a, denoted byQ(a), is the expected QoS of all (finite) executions by executing the action
a at s. It is calculated using a Simple Additive Weighting (SAW) method [24]. For
the purpose of normalization, the action a compares the probabilistic estimations of its
QoS attributes with the maximum and minimum probabilistic estimations of all enabled
Maybe actions. The calculation of Q(a) is provided in Equation (2), where wi ∈ R+

is the weight with
∑3

i=1 wi = 1. The local optimality value of an action a, denoted
by L(a), is calculated using Equation (3), where Sr(a), Sa(a), Sc(a) ∈ {true, false}
denote whether the execution of action a could allow potential satisfaction of global
constraints of response time, availability and cost respectively. Function fb(b) takes
an input b ∈ {true, false}. When b is true, fb(b)=1, otherwise, fb(b)=0. The local
optimality value of the action a ranges from 0.5 to 1 if Sr(a)∧Sa(a)∧Sc(a), otherwise
L(a) ranges from 0 to 0.5. Therefore, it could guarantee that the local optimality values
of actions that could possibly satisfy the global constraints are higher than the one that
could not.

Q(a) = w1 ·
U

(r)
Max(s)− a.probtag

U
(r)
Max(s)− U

(r)
Min(s)

+ w2 ·
A(a) · Lpr

A (s ′)− U
(a)
Min(s)

U
(a)
Max(s)− U

(a)
Min(s)

+ w3 ·
U

(c)
Max(s)− (C(a) + Lpr

C (s ′))

U
(c)
Max(s)− U

(c)
Min(s)

with

U
(r)
M (s) = M

a∈MAct(s)
(a.probtag)

U
(a)
M (s) = M

a∈MAct(s)
(A(a) · Lpr

A (s ′))

U
(c)
M (s) = M

a∈MAct(s)
(C(a) + Lpr

C (s ′))

M ∈ {min,max}

(2)

L(a)=0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)) (3)

10

Algorithm 1: Algorithm ChooseAction

input : s, the active state
input : ctime , current time
input : stime , execution start time
input : c, cost that has been incurred so far
output: a, the next action to execute

1 if Ctrl(P (s)) then
2 Sr ← ((ctime− stime+ Lpe

R (s)) ≤ CR
g) ;

3 Sa ← (Lpe
A (s) ≥ CA

g) ; Sc ← ((c+ Lpe
C (s)) ≥ CC

g) ;
4 if ¬(Sr ∧ Sa ∧ Sc) then
5 return argmax

a∈MAct(s)
(0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)));

6 return ∅ ;

Adaptation Algorithm The adaptation algorithm is shown in Algorithm 1, which is
used to choose the action to execute next. In Algorithm 1, the variable s ∈ S is the active
state reached by the execution, ctime and stime are the current time and start time of
the execution respectively, and c ∈ R≥0 is the cost that has been incurred from the initial
state to state s. Line 1 checks whether Runtime Adapter could control the activity P (s).
IfP (s) is controllable, then the algorithm proceeds in checking the potential satisfaction
of global constraints. In line 2, it calculates the potential satisfaction of global constraint
of response time, Sr, by checking that the duration of execution so far (ctime − stime)
added with the pessimistic estimation of state s (Lpe

R (s)) is not larger than the global
constraint of response time CR

g . If the result is false, then there exists an execution that
could violate CR

g ; otherwise, any execution from state s would allow satisfaction of
CR

g . The calculation of Sa and Sc (line 3) can be described in a similar manner.
If not all the global constraints for response time, availability and cost are detected to

be satisfiable based on the pessimistic estimation (line 4), then the algorithm will return
a best action with the highest local optimality value (line 5). Otherwise, the algorithm
will return an empty action (line 6), which signals that an adaptation is not required.

4.5 Asynchronous Monitoring

ADAPTER might require to deal with multiple concurrent state update messages due to
the concurrent execution of activities in the composite service (recall that service com-
position supports the parallel composition). Synchronous communication between the
ADAPTER and the EXECUTOR for each state update message could result in high over-
head and the parallel execution in the EXECUTOR can be “sequentialized”. To be effi-
cient, ADFLOW adopts an asynchronous monitoring mechanism. That is, asynchronous
communication is used between the ADAPTER and the EXECUTOR during normal sit-
uations, and synchronous communication is used when it is necessary. In particular,
all the state update messages are sent asynchronously to the message queue, and the
ADAPTER updates states in batches on the probabilistic partial model. Synchronous
communication is used only when the EXECUTOR encounters controllable activities. In
such a case, an adaptation query message is sent to the message queue synchronously
(i.e., the EXECUTOR waits for the reply before continuing execution) to consult whether
there is a need for adaptation before their execution. The asynchronous monitoring of

11

ADFLOW is shown in Figure 3b. We have shown that synchronous monitoring has
effectively reduced the overhead for monitoring (see Section 5 for the evaluation).

5 Evaluation
To reduce the external noise and control the non-functional aspect of a service, we make
use of controlled experiment to evaluate our approach. We aim to answer the following
research questions:
RQ 1. What is the overhead of ADFLOW?
RQ 2. What is the improvement provided by ADFLOW on the conformance of global

constraints?
RQ 3. How is the scalability of ADFLOW?
The evaluation was conducted using two different physical machines, which are con-
nected by a 100 Mbit LAN. One machine is running ApacheODE [1] to host the Run-
time Engine to execute the service program, configured with Intel Core I5 2410M CPU
with 4GiB RAM. The other machine is to host the Runtime Adapter, configured with
Intel I7 3520M CPU with 8GiB RAM.

We use two case studies in this paper to evaluate our approach: Travel Booking
Services and Large Service. Component services used in both services are real-world
services that are set up on the server.
Travel Booking Service (TBS). This is the running example that has been used through
out the paper.
Large Service (LS). To evaluate the scalability of our approach, we construct a large
service LS with sequential execution of k base activities. The base activity is con-
structed by sequential execution of a synchronous invocation, followed by a control-
lable conditional activity with three branches which one branch has a better QoS, and
subsequently followed by a concurrent activity. We denote the composite service with
sequential execution of k base activities as LS(k), which would consult ADAPTER for
adaptation for k times since there are k controllable conditional activities.

5.1 Setup of Controlled Experiments

Given a composite service CS, we denote all component services that are used by CS
as SCS . Given a component service si ∈ SCS , we use Re(si), Ae(si), and Ce(si) to
denote the estimated response time, availability and cost of the component service si,
which are either recorded in SLA or predicted based on historical data.

To test the composite service under controlled situation, we introduce the notion
of execution configuration. An execution configuration which defines a particular ex-
ecution scenario for the composite service. Formally, an execution configuration E
is a tuple (M,Q), where M decides which path to choose for 〈if〉 and 〈pick〉 ac-
tivities and Q is a function that maps a component service si ∈ SCS , to a vector
〈R(si), A(si), C(si)〉. R(si), A(si) and C(si) are QoS values for response time, avail-
ability, and cost of si. We discuss how an execution configuration E = (M,Q) is
generated. M is generated based on the probabilities of each branch of the conditional
activities. Q is generated based on conformance parameter pc ∈ R ∩ [0, 1] and the es-
timated QoS attribute values. Given a composite service CS, we denote the estimated
value of response time for a component service si ∈ SCS as Re(si). R(si) will be as-
signed with a value from [0, Re(si)] normally with the probability of pc, and assigned

12

2,000 4,000 6,000 8,000 10,000
200

300

400

500

Number of Repetition

R
un

ni
ng

Ti
m

e
(m

s)

TBS

TBSN

TBSS

LS(10)

LS(10)N

(a) Overhead

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr

ov
em

en
t

TBS

LS(10)

(b) Conformance

2,000 4,000 6,000 8,000 10,000
0

20

40

Number of Repetition

O
ve

rh
ea

d
(m

s)

LS(10)

LS(20)

LS(30)

LS(40)

LS(50)

LS(60)

LS(70)

LS(80)

LS(90)

LS(100)

(c) Scalability (Conformance)

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr

ov
em

en
t

LS(10)

LS(20)

LS(30)

LS(40)

LS(50)

LS(60)

LS(70)

LS(80)

LS(90)

LS(100)

(d) Scalability (Improvement)
Fig. 4: Experiment Results

with a value from [Re(si), 3 · Re(si)] normally with the probability of 1 − pc. Values
A(si) and C(si) are generated similarly.

Given a composite service CS, and an execution configuration E, we denote a run
as r(CS,A,E), where the second argument A ∈ {ADFLOW, ∅} is the adaptive mech-
anism where ∅ denotes no adaptation. Two runs r(CS,A,E) and r(CS′, A′, E′), are
equal, iff CS = CS′, A = A′ and E = E′. Noted that all equal runs have the same
execution paths, aggregated response times, availabilities costs.

5.2 Evaluation

We conduct three experiments E1, E2, and E3, to answer the research question RQ1,
RQ2, and RQ3, respectively. Each experiment is repeated for 10000 times, and a con-
figuration generation E is randomly generated for each repetition. We show the experi-
ments and their results in the following.

E1: The overhead of our approach mainly comes from two sources: the asyn-
chronous monitoring and synchronous adaptation. Given a composite serviceCS, in or-
der to measure the overhead, we first generate an execution configuration E = (M,Q)
for an adaptive run r(CS,ADFLOW, E). Adaptive run may not select a branch ac-
cording to M , since the selection of a branch could also be decided by the ADAPTER,
in the case where ADAPTER decides to control a controllable conditional structure.
Therefore, after the adaptive run, we modifies M to M ′, according to the actual con-
ditional branch selected by the ADAPTER. Then, using the M ′, we perform the non-
adaptive run r(CS, ∅, E′), where E′ = (M ′, Q). These ensure that both adaptive run
and non-adaptive run have the same execution, which allow effective measurement of
the overhead introduced by ADFLOW. In this experiment, we set the conformance of

13

each component service to 0.8. We compare the overhead of the following:
No Adaptation. Execution of the service program without the adaptation, for which
we append the name of case studies with a subscript N , i.e., TBSN , LS (10)N .
Synchronous Adaptation. Runtime adaptation using synchronous monitoring (in con-
trast to our asynchronous monitoring approach) with ADFLOW, for which we append
the name of case studies with a subscript S, e.g., TBSS , LS (10)S .
ADFLOW approach. Runtime adaptation using ADFLOW, for which the case studies
are specified without any subscript, e.g., TBS , LS (10).
Results. The experiment results can be found in Figure 4a. Note that due to the space
constraint, the result of LS (10)S is not shown in our results. The average running time
of TAS with adaptation is 278.28 ms and the average running time of TAS without adap-
tation is 271.69 ms; therefore the overhead is only 6.59 ms, 2.3% of the running time. In
contrast, the overhead for synchronous monitoring is 179.12 ms for TAS. On the other
hand, the average running time of LS(10) is 457.65 ms and the average running time of
LS(10) without adaptation is 450.66 ms; therefore, average overhead is 6.99 ms. In con-
trast, the overhead for the adaptation using synchronous monitoring is around 1100 ms.
The results show that our approach has a little overhead, and compared to the adaptation
using synchronous monitoring, our approach reduces the overhead noticeably.
E2: In this experiment, we measure the improvement for the conformance of global
constraints due to ADFLOW. Given a composite service CS, a randomly generated ex-
ecution configurationE, two runs r(CS,ADFLOW, E) and r(CS, ∅, E) are conducted.
Nse is the number of executions that satisfy global constraints for composite service
with ADFLOW, and Ne is the number of executions that satisfy global constraints for
composite service without ADFLOW. The improvement is calculated by the formula
Improvement = (Nse −Ne)/10000. We perform the experiment for 10000 times.
Results. The experiment results can be found in Figure 4b. We notice that although the
improvement fluctuates at the beginning, ADFLOW always provides an improvement,
compared to no adaptation. We also notice that the improvement provided by ADFLOW
starts to converge when the number of repetition grows. Overall, our approach improves
0.283 over TBSN and improves 0.3 over LS(10)N . The experiment results show that
our approach noticeably improves the conformance of global constraints.
E3: We compare the overhead and improvement with respect to the size of LS , ranging
from 10 to 100.
Results. The experiment results can be found in Figure 4c and 4d. In Figure 4c, the
overhead increases with the size of LS , due to the reason that more synchronous adap-
tations are required with the size of the composite service increases. Nevertheless, we
still have low overhead compared to the total running time, which is around 1% – 3%.
In Figure 4c, we observe that the improvement for each case studies fluctuates between
0.2 – 0.42 at the beginning. The improvement starts to converge when the number of
repetition grows. On average, the improvement for the case studies is between 25 % –
32 %. This is consistent to our observations in experiment E2. Together, these show our
approach scales well.

6 Related Work
In [5], Cardellini et al. propose to use a set of service components to implement the
functionality of a component service adaptively. Their work focuses on adapting a

14

single service for the purpose of decreasing response time and increasing availability.
In [17], Moser et al. propose a framework that uses non-intrusive monitoring based on
aspect-oriented programming (AOP), to detect failure service and replace them at run-
time. In [15], Irmert et al. present the CoBRA framework to provide runtime adaptation,
where the infeasible component services are replaced at runtime. In [18], Mukhija and
Glinz propose an approach to adapt an application by recomposing its components dy-
namically, which implemented by providing alternative component compositions for
different states of the execution environment. This work is orthogonal to our approach,
they adopt point adaptation strategy, while we adopt workflow adaptation strategy.

Our work is also related to the non-functional aspect of Web service composition.
In [13], Fung et al. propose a message model tracking model to support QoS end-to-
end management. In [16], Koizumi et al. present a business process performance model
which integrates the Timed Petri model and statistical model to estimate process execu-
tion time. Epifani et al. [9] present the KAMI approach to update model parameters by
exploiting Bayesian estimators on collected runtime data. These aforementioned works
are concerned with the prediction of QoS attributes, while our work focuses on runtime
adaptation based on QoS attributes. In [20], given the response time requirement of the
composite service, Tan et al. propose a technique to synthesize the local time require-
ment for component services that are used to compose the service. In [7,6,23,19], we
focus on verification of combined functional and non-functional properties of the web
service composition based on QoS of each component service. In [22,21], we propose
to solve the optimal selection problem and recovery problem so that it could satisfy the
requirements. The aforementioned works are orthogonal to this work.

7 Conclusion
In this paper, we have presented ADFLOW, a novel approach for monitoring and self-
adapting the running of Web service composition to maximize its ability to satisfy the
global constraints. ADFLOW uses workflow adaptation strategy, by selecting the best
path for execution when necessary. In addition, ADFLOW adopts asynchronous moni-
toring to reduce the overhead. The evaluation has shown the efficiency and effectiveness
of our approach. In particular, given a composite service, we achieve 25% – 32% of av-
erage improvement in the conformance of non-functional requirements, and only incur
1% – 3% of overhead with respect to the execution time. For future work, we plan to
investigate the applicability our approach to other domains such as sensor networks [4].

References
1. Apache ODE. http://ode.apache.org/.

2. Microservices. http://microservices.io/patterns/microservices.
html.

3. Technical report. http://tianhuat.bitbucket.org/technicalReport.pdf.

4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Sensor networks. Y, et a1. A
survey on IEEE Communications Magazine, 40(8):102–114, 2002.

5. V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and R. Mirandola. Moses: A
framework for qos driven runtime adaptation of service-oriented systems. TSE, 38(5):1138–
1159, 2012.

15

http://ode.apache.org/
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://tianhuat.bitbucket.org/technicalReport.pdf

6. M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong. Veriws: a tool for verification of combined
functional and non-functional requirements of web service composition. In ICSE, pages
564–567, 2014.

7. M. Chen, T. H. Tan, J. Sun, Y. Liu, J. Pang, and X. Li. Verification of functional and non-
functional requirements of web service composition. In ICFEM, pages 313–328, 2013.

8. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services description lan-
guage (WSDL) version 2.0. http://www.w3.org/TR/wsdl20/.

9. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-time pa-
rameter adaptation. In ICSE, pages 111–121, 2009.

10. A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis
based on a combination of program slicing, abstract interpretation, and invariant analysis. In
WCET, 2007.

11. M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and reasoning
with uncertainty. In ICSE, pages 573–583, 2012.

12. H. Foster. A rigorous approach to engineering Web service compositions. PhD thesis, Cite-
seer, 2006.

13. C. K. Fung, P. C. K. Hung, G. Wang, R. C. Linger, and G. H. Walton. A study of service
composition with qos management. In ICWS, pages 717–724, 2005.

14. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and
Y. Lafon. Simple object access protocol (SOAP) version 1.2. http://www.w3.org/
TR/soap12/.

15. F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-oriented com-
ponent model. In SEAMS, pages 97–104. ACM, 2008.

16. S. Koizumi and K. Koyama. Workload-aware business process simulation with statistical
service analysis and timed petri net. In ICWS, pages 70–77, 2007.

17. O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation
for ws-bpel. In WWW, pages 815–824, 2008.

18. A. Mukhija and M. Glinz. Runtime adaptation of applications through dynamic recomposi-
tion of components. In ARCS, pages 124–138, 2005.

19. T. H. Tan. Towards verification of a service orchestration language. ISSRE, pages 36–37,
2010.

20. T. H. Tan, É. André, J. Sun, Y. Liu, J. S. Dong, and M. Chen. Dynamic synthesis of local
time requirement for service composition. In ICSE, pages 542–551, 2013.

21. T. H. Tan, M. Chen, É. André, J. Sun, Y. Liu, and J. S. Dong. Automated runtime recovery for
qos-based service composition. In 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014, pages 563–574, 2014.

22. T. H. Tan, M. Chen, J. Sun, Y. Liu, É. André, Y. Xue, and J. S. Dong. Optimizing selection of
competing services with probabilistic hierarchical refinement. In ICSE, pages 85–95, 2016.

23. T. H. Tan, Y. Liu, J. Sun, and J. S. Dong. Verification of orchestration systems using compo-
sitional partial order reduction. In ICFEM, volume 6991, pages 98–114, 2011.

24. K. Yoon and C. Hwang. Multiple attribute decision making: an introduction. Number 102-
104. Sage Publications, Incorporated, 1995.

16

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/soap12/

	Service Adaptation with Probabilistic Partial Models

