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Abstract. In component-based systems, a number of existing software compo-
nents are combined in order to achieve business goals. Some of such goals may
include system-level (global) timing requirements (GTR). It is essential to refine
GTR into a set of component-level (local) timing requirements (LTRs) so that if
a set of candidate components collectively meets them, then the corresponding
GTR is also satisfied. Existing techniques for computing LTRs produce mono-
lithic representations, that have dependencies over multiple components. Such
representations do not allow for effective component selection and repair. In this
paper, we propose an approach for building under-approximated LTRs (ULTR)
consisting of independent constraints over components. We then show how ULTR
can be used to improve the design, monitoring and repair of component-based
systems under time requirements. We also report on the implementation of this
approach and its evaluation using real-world case studies in Web service com-
position. The results demonstrate its practical value and advantages over existing
techniques.

Keywords: Time requirements, component-based system, service selection,
monitoring, error recovery.

1 Introduction

Component-based software design has been widely adopted in practice for its support
for separation of concerns, management of complexity and improved reusability. In
this paradigm, a number of existing software components are combined to achieve a
business goal. Software components usually communicate and interact via a predefined
interface specifying the anticipated syntax and behaviors of components. The basic
promise of component-based software design is that component services can be used as
building blocks for larger integrated systems without the deep knowledge of their inter-
nal structures [18]. In other words, system designers can treat interfaces as descriptive
abstractions which should be both informative and sufficiently small.

The component-based design methodology has also been successfully applied for
time-critical systems such as timed circuits [18], embedded real-time systems [13,22]
and Web service compositions. The correctness and reliability of such systems depend
not only on the logical computation results but also on their timely response in all cir-
cumstances. Hence, it is an important requirement that the end-to-end (global) response
time (GTR) in the composite system is within a particular range (e.g., under 1 second).
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Local Time Requirements. The system-level response time clearly depends on the re-
sponse times of the underlying components. The behavioral correctness of component-
based systems is often achieved by establishing contracts between sets of components.
If these are met, then the overall behavioral correctness is satisfied. In timed systems,
Local Time Requirements (LTR) are counterparts of such contracts, establishing con-
straints on the response times of the individual components. If LTRs are met, then the
GTR of the whole system is met as well.

Intuitively, an LTR is a constraint on the parametric response times and the con-
straint highly depends on the structures of the compositions. Suppose we have a model
consisting of two abstract components, C1 and C2, taking time t1 and t2, respectively.
Suppose the GTR for both systems is “produce the response in under k time units”. If
the two components are sequentially composed, i.e., C2 takes the output of C1 as its
input, the global response time of the composition is t1+ t2. In the parallel composition
case, both C1 and C2 are invoked at the same time, and the output of whoever finishes
first is returned. The global response time is thus min(t1, t2).

Prior Work. Existing work [21] synthesizes LTRs based on the structure of component
compositions and represents them as a linear real arithmetic formula in terms of com-
ponent response times. In the context of our example, LTRs of the two systems would
be t1 + t2 ≤ k and (t1 ≤ t2 ⇒ t1 ≤ k) ∧ (t1 > t2 ⇒ t2 ≤ k), respectively1. An LTR
formula typically depends on multiple components. Such a “monolithic” representation
has a number of limitations in designing, monitoring and repairing component-based
systems. First, at the software design stage, given the LTR of the system, all abstract
components appearing in the LTR formula have to be considered together in order to
select a suitable combination. This is often infeasible in practice for two reasons: (1)
The enumeration of all possible combinations of candidate components is computa-
tionally expensive when the number of functionally equivalent components is large [3].
For example, with 5 abstract components and 100 alternatives for each, the total num-
ber of possible combinations is 1005. The situation is even worse when selection has
to be done during runtime (online selection). (2) Under the commonly-used consumer-
broker-provider component service selection model [9] (shown in Fig. 1), the consumer
has no direct access to the service, e.g., due to privacy concerns, and service discovery
is done using a discovery agent. Many Quality of Service (QoS) broker-based service
discovery frameworks have been proposed [1,17]. In those frameworks, service search
and discovery are delegated to brokers who find suitable services for consumers based
on some QoS requirements (e.g., response time, price, availability, etc.) expressed as
queries. Such queries can only involve a single component.

Second, violations of time requirements are inevitable during runtime. In complex
software systems, the performance of components often varies with time. Sometimes
multiple components delay but not all of them are the actual causes of the violation.
The monolithic representation of LTRs prevents us from being able to distinguish prob-
lematic components and suggest point-wise error recovery and adaptation strategies.
The only possible recovery strategy is to replace all delayed components with function-

1 Time variables appearing in LTR constraints are implicitly assumed to have real values greater
or equal to zero, i.e., t1, t2 ∈ R, t1 ≥ 0, t2 ≥ 0.
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Fig. 1. Illustration of the consumer-
broker-provider component service
selection model [9,1,17]
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Fig. 2. Workflow diagram of the SMIS example

ally equivalent substitutes that conform to the original timing contracts. Clearly, being
able to decompose LTSs and understand the independent timing constraints effectively
would yield more options and help find the most efficient recovery strategies.

The ULTR Approach. In this paper, we propose an approach that aims at lifting the
above-mentioned limitations of the existing LTR representation by decomposing it into
multiple sub-formulas where different abstract components have independent timing
contracts. The decomposed constraints under-approximate the original LTR while pro-
viding local guarantees on the level of its precision. As a consequence, the compo-
nent combinations satisfying the under-approximated LTR (denoted by ULTR) also
satisfy the original LTR. Recall the parallel composition example. A possible ULTR is
{B1 ≡ t1 ∈ [0,∞)∧ t2 ∈ [0, k], B2 ≡ t1 ∈ [0, k]∧ t2 ∈ (k,∞)} which captures the ex-
act same set of software components that meet the timing requirements. The constraints
in both sub-formulas B1 and B2 treat each component independently, i.e., to check the
satisfiability of ULTR, one only needs to look at a single component each time, and
once all components satisfy their own contracts, the ULTR is also satisfied.

Given a quantifier-free linear real arithmetic (QF LRA) formula ϕ containing only
time variables ti ∈ T which represent the response times of software components ci ∈
C, we exploit the power of Satisfiability Modulo Theories (SMT) solvers to sample
best under-approximations of ϕ, denoted as BU(ϕ). Formula BU(ϕ) is in the Interval
(BOX) abstract domain [10], i.e., in the form

∧
ti∈T li ≤ ti ≤ ui. The key to computing

BU(ϕ) is the application of a symbolic optimization procedure which helps find the
weakest formula representing a hypercube under the possibly non-convex constraints.
The hypercube shaped samples of ϕ are systematically obtained and aggregated to form
a ULTR until it is precise enough. We apply various heuristics according to the structure
of ϕ to ensure fast convergence.

Contributions of This Paper. (1) Given LTRs of a component-based system,
we develop a sound method for decomposing these constraints and discharging
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inter-dependencies over multiple components while providing precision guarantees. (2)
We demonstrate the applicability of our method in component selection and its advan-
tages in generation of recovery strategies when compared with the monolithic approach.
(3) We evaluate the effectiveness of the ULTR approach in component selection through
case studies conducted on real-world Web service compositions.

We implemented our algorithm using the Z3 SMT solver [16] and the symbolic
optimization tool OPTMATHSAT [20] and reported our experience on its applicabil-
ity in component selection. The candidate Web services were chosen from a pub-
licly available Web service dataset QWS [1]. We also demonstrated that the ULTR
model, when adopted in automated error recovery, can help discover repair strategies
that are otherwise not possible to find. Supplemental materials including our proto-
type implementation and LTR constraints for the case studies are available online at
http://www.cs.utoronto.ca/~liyi/ultr/.

Organization. The rest of the paper is organized as follows. Sec. 2 gives an overview
of the ULTR approach using a running example. We present the main algorithm and its
applications in Sec. 3 and 4, respectively. Sec. 5 describes the implementation details
and empirical evaluation of the effectiveness of our approach. We review related works
in Sec. 6 and conclude the paper in Sec. 7.

2 Approach at a Glance

This section illustrates our approach on an example of Web service composition [21].

Stock Market Indices Service (SMIS). SMIS is a paid service to provide updated stock
indices to the subscribers. It provides service-level agreement (SLA) to the subscribers
stating that it always responds within 3 seconds upon request. The SMIS has three
component services: a database service (DS), a free news feed service (FS) and a paid
news feed service (PS). The workflow of the composite service is shown in Fig. 2 and
is described in the XML-based service composition language BPEL2.

The SMIS strategy is calling the free service FS before the paid service PS in order
to minimize the cost. Upon returning result to the user, SMIS caches the latest results
in an external database service provided by DS. Upon receiving the response from DS,
if the indices are already available (the <if> branch, denoted in Fig. 2 by ✸), they are
returned to the user; otherwise, FS is invoked asynchronously. A <pick> construct (de-
noted by⊗) is used here to wait for an incoming response from a previous asynchronous
invocation and timeout if necessary. If the response from FS is received within one sec-
ond, the result is returned to the user. Otherwise, the timeout occurs, and SMIS stops
waiting for the result from FS and calls PS instead. Similar to FS, the result from PS is
returned to the user if the response from PS is received within one second. Otherwise,
it would notify the user regarding the failure of getting stock indices.

LTR Synthesis. Starting with the global timing requirement (GTR) that the composite
service must respond within 3 seconds, we use the process of [21] to get the local timing

2 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

http://www.cs.utoronto.ca/~liyi/ultr/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
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ϕ ≡ ¬(0 ≤ tDS ∧ 1 ≤ tFS ∧ 1 ≤ tPS)
∧ (0 ≤ tDS ∧ 0 ≤ tFS ∧ 0 ≤ tPS)

⇒ tDS ≤ 3
∧ (0 ≤ tDS ∧ 0 ≤ tFS

∧0 ≤ tPS ∧ tFS ≤ 1)
⇒ tDS + tFS ≤ 3

∧ (0 ≤ tDS ∧ 0 ≤ tPS

∧1 ≤ tFS ∧ tPS ≤ 1)
⇒ tDS + tPS ≤ 2

Fig. 3. LTR constraints ϕ of SMIS
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Fig. 4. Feasible region of ϕ in the 3D space

constraints. The resulting LTR is a quantifier-free linear real arithmetic (QF LRA) for-
mula ϕ shown in Fig. 3. It contains three time variables, tDS, tFS and tPS. Geometrically,
the feasible region allowed by ϕ is a non-convex polyhedron in 3-dimensional space as
depicted in Fig. 4, and a particular service combination can be represented by a point in
the space.

Building ULTR Model via Sampling. To under-approximate ϕ and guarantee preci-
sion at the same time, we greedily sample largest possible hyperrectangles (also referred
to as BOXES) from the feasible space constrained by ϕ by iteratively using an SMT
solver. After obtaining each sample, we block the space of that sample from ϕ so that
no portion of ϕ is explored twice by the solver. For our example, this method proceeds
by applying the following operations non-deterministically:

1. Pick a largest possible hypercube3. Suppose the first sample picked from ϕ is
([0, 1), [0, 1), [0, 1)), a shorthand notation for the conjunctive constraint s1 ≡ 0 ≤ tDS <
1∧0 ≤ tFS < 1∧0 ≤ tPS < 1, which is the largest hypercube at the moment because the
three variables cannot be greater than or equal to 1 at the same time under the constraint
ϕ. See the shaded region in Fig. 4.

2. Sample an infinite number of hypercubes at a single step to form a hyperrect-
angle with infinite heights in some dimensions. This allows the algorithm to converge
when there are unbounded directions. For example, ([0, 1), [1,∞), [0, 1)) has an infinite
height in the tFS direction.

3. Terminate the sampling process when the size of the largest obtained sample is
smaller than a predefined precision level ω > 0. More precisely, the algorithm termi-
nates when there is no hypercube of size greater or equal to 2ω left in ϕ.

As an under-approximation technique, ULTR never returns false positives, i.e., it
never erroneously claims that a combination of services satisfies timing requirements.
By setting the precision level, our method provides an upper bound for the “local” infor-
mation loss. For instance, ω = 0.1 ensures that for every misclassified (false negative)
point there exists a close enough point (the distance between the projections on some
dimension is less than 0.1) which is correctly classified.

3 A hyperrectangle is a generalization of rectangle in an n-dimensional space. A hypercube is a
special form of a hyperrectangle with an equal height in each dimension.
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3 The ULTR Algorithm

3.1 Definitions

Formulas. Let L be the QF LRA theory defined as follows:

ϕ ∈ L ::= true | false | P ∧ P′ | P ∨ P′

P,P′ ∈ Atoms ::= c1v1 + · · ·+ cnvn ◃▹ k, n ∈ N
vi ∈ Vars ::= {v1, . . . , vn},

where ci, k ∈ R, ◃▹= {<,≤}. We use !ϕ" to denote the set of all satisfying assignments
(models) of ϕ. A model p : Vars → R of ϕ, denoted p |= ϕ, is a valuation of the
variables of ϕ such that ϕ(p) ≡ true, where ϕ(p) is ϕ with every occurrence of a
variable v replaced by p(v). Geometrically, p is a point in Rn, and in what follows, we
use the terms model and point to refer to p interchangeably. We use Vars(ϕ) to denote
the set of all Vars appearing in ϕ.

BOX and BOXES [12]. A set B ⊆ Rn is a BOX iff it is expressible by a finite system
(Cartesian product) of interval constraints. The set of all BOX-es of Rn is denoted by Bn.
A set BS ⊆ Rn is a BOXES iff there exist BOX-es B1, . . . ,Bk such that BS = ∪k

i=1Bi.
The set of all sets of BOXES of Rn is denoted by BSn.

Let V = {v1, . . . , vn} be variables. We assume that each variable is bound to some
unique dimension in Rn and use formV(B) to denote the formula

∧
vi∈V li ◃▹ vi ◃▹ ui s.t.

p ∈ B ⇔ p |= formV(B). Similarly, formV(BS)denotes the formula
∨

1≤i≤k formV(Bi).
In the rest of the paper, we do not distinguish between the set representation and its corre-
sponding formula representation and abuse the notations B and BS to mean formVars(ϕ)

(B) and formVars(ϕ)(BS) respectively.

Precision Level. Assume BS ⇒ ϕ. ω is the precision level of BS w.r.t. ϕ iff

∀ p ∃ p′ ∃ v · p |= ϕ ∧ p ! BS ⇒ (p′ |= ϕ ⇔ p′ |= BS)∧ | p(v)− p′(v) |≤ ω.

That is, for any false negative p misclassified by BS there exists another point p′ which
is correctly captured, and the distance between p and p′ in the v direction is less than or
equal to ω.

Symbolic Optimization. Let ϕ be a formula in L. Let f be a linear objective function,
i.e., a linear term over Vars(ϕ) = {v1, . . . , vm}, in the form c1v1 + · · · + cmvm, where
ci ∈ R. We say k is the least upper bound of f w.r.t. ϕ and denote it by Lubf (ϕ) iff
ϕ ⇒ f ≤ k (k ∈ R ∪ {−∞,∞})4 and there does not exist k′ < k where ϕ ⇒ f ≤ k′.
The procedure of computing Lubf (ϕ) is called symbolic optimization.

3.2 Best Under-approximation

We now formalize the notion of best under-approximation and describe the algorithm
for computing it.

Definitions. Let ϕ ∈ L. A BOX formula B is an under-approximation of ϕ iff B ⇒ ϕ.
Let U(ϕ) be the set of all under-approximations of ϕ in Bn.

4 Note that k is ∞ if f is unbounded in ϕ, and −∞ if ϕ is unsatisfiable.
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1: function FBU(ϕ, f )
2: B ← true
3: θ ← ∀Vars(ϕ) · (

∧
vi∈Vars(ϕ)

αi ! vi ! βi) ⇒ ϕ

4: θ′ ← QELIM(θ) ◃ Quantifier elimination
5: p ← Lubf (θ

′) ◃ Symbolic optimization
computing p ∈ !θ" that optimizes f

6: for all vi ∈ Vars(ϕ) do
7: B ← B ∧ (p(αi) ≤ vi ≤ p(βi))

8: return B

Fig. 5. Algorithm for computing B ∈ BUf (ϕ)

1: function ULTR (ϕ,ω)
2: BS ← ∅, h ← ∞, i ← 0
3: B0, h0 ← MAXCUBE(ϕ)
4: while hi ≥ 2ω do
5: ASSERT(¬Bi); i ← i + 1
6: Bi, hi ← MAXCUBE(ϕ)
7: if (*) then ◃ non-deterministic
8: Bi ← INFCUBE(ϕ,Bi)
9: BS ← BS ∪ Bi

10: return BS

Fig. 6. Iterative hypercube sampling

Let f : Bn → R be a function mapping a BOX formula to a real number. A BOX

formulaB is the best under-approximation of ϕ iff B ∈ U(ϕ) and ∀B′ ∈ U(ϕ)·f (B′) ≤
f (B). Let BUf (ϕ) be the set of all best under-approximations of ϕ.

Computing Best Under-approximation. Let θ ≡ ∀Vars(ϕ) · (
∧

vi∈Vars(ϕ) αi ! vi !
βi) ⇒ ϕ, whereαi and βi are real-valued bound variables introduced for each variable vi

in ϕ. Because the upper and lower bound pairs for all variables uniquely define a BOX

formula, we pose the problem of finding U(ϕ) as computing the set of all satisfying
assignments for αi and βi in the quantified formula θ. Then we are able to compute the
best satisfying assignment BUf (ϕ), which is the optimal BOX formulas in U(ϕ) w.r.t.
f , by calling Lubf (θ). An algorithm FBU is given in Fig. 5. Quantifier elimination
has to be applied on θ first to find the quantifier-free equivalent θ′ (Line 4) in order to
work with symbolic optimization procedures. The function FBU correctly computes the
optimal BOX formulaB that makes B ⇒ ϕ valid through finding satisfying assignments
of θ, which is supported by Proposition 1.

Proposition 1. Let p ∈ !θ". Let ψ be the result of substituting li, ui in (B ⇒ ϕ), for
each vi ∈ Vars(ϕ), by p(αi) and p(βi) respectively. Then if θ is satisfiable, ψ is valid;
otherwise, there does not exist B ∈ Bn such that B ⇒ ϕ is valid.

3.3 Iterative Hypercube Sampling

B1 B2

B3

B4

B5

�

h

Fig. 7. The iterative sampling
process illustration

We now show how FBU can be used to compute a
BOXES formula that under-approximates a given LTR
formula ϕ and ensures a local precision level through it-
erative hypercube sampling. As in Fig. 6, the ULTR al-
gorithm iteratively samples from ϕ using an SMT solver
and maintains a BOXES formula BS as the current com-
puted under-approximation of ϕ. Each new sample Bi is
added to BS and blocked from the future exploration by
asserting ¬Bi in the SMT solver context (Lines 5 and
9). For example, the grey boxes in Fig. 7 are blocked and
the next sample is B5. The ULTR algorithm makes use of
operations MAXCUBE and INFCUBE described below.
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MAXCUBE(ϕ). The volume of a hyperrectangle, also known as hypervolume, is the
product of its heights in all dimensions. Since hypercubes have equal height in all di-
mensions, i.e., βi − αi = h for all vi ∈ Vars(ϕ) (the value of h is non-negative), we
find a hypercube with a maximal volume in ϕ by asserting an additional constraint∧

vi∈Vars(ϕ)(βi − αi = h) and computing a best under-approximation Bi ∈ BUh(ϕ)
using the procedure FBU to maximize the height h.

INFCUBE(ϕ,Bi). This operation is to ensure convergence when there are dimensions
where ϕ is unbounded. Given a maximal BOX Bi, it tries to relax the constraint in each
dimension in a fixed order. Relaxing the constraint vi ≤ ui is equivalent to sampling
an infinite number of hypercubes with the same size as Bi in the positive direction of
dimension vi. For example, 1 ≤ v is a relaxation of 1 ≤ v ≤ 2 in the positive v direction.
If the relaxed BOX B′

i still under-approximates ϕ then we can replace Bi by B′
i .

Correctness and Termination. The algorithm terminates if hi < 2ω and the precision
level is satisfied. For the example in Fig. 7, if ω = height(B5)/2 then the algorithm
terminates after B5 is sampled since no BOX equal or larger than B5 left within ϕ.
We now show that when the height of last sample h < 2ω, the precision level of ω is
guaranteed. Assume not, then for all mis-classified p there does not exist p′ that meets
the distance criteria and is correctly classified by BS. Thus, there exists a hypercubeB′

centered at p with height 2ω such that ∀ p′′ ∈ B′ · p′′ |= ϕ ∧ p′′ ! BS. This contradicts
the termination condition h < 2ω, which implies there does not exist such B′.

The correctness of the sampling algorithm trivially follows from the fact that every
sample is a BOX formula that implies ϕ. Therefore, the disjunction of such samples BS
is an under-approximation of ϕ as well. From the correctness of FBU, the heights hi of
the sampled hypercubes form a non-increasing sequence. The algorithm terminates if
INFCUBE is eventually applied.

4 Applications

In this section, we show how ULTR models can be applied in both component selection
and runtime error recovery.

Component Selection. Recall that in the consumer-broker-provider component service
selection model, consumers can only make component-specific search queries through
a broker in order to find services they need. Having the property of component indepen-
dence, ULTR constraints BS can easily be translated into a sequence of simple service
search queries, e.g., “what are the news feed services that have response time less than
0.8 seconds”. The broker is able to answer such queries by returning a set of services
that satisfy the requirements in the queries [17].

In the SMIS running example, the ULTR computed are the three BOX constraints
In the SMIS example, the ULTR computed contains three BOX constraints {B1 ≡
([0, 1), [0,∞), [0, 1)),B2 ≡ ([0, 1), [0, 1), [1,∞)),B3 ≡ ([1, 2), [0, 1), [0,∞))}, where
intervals in each tuple represent the allowed time ranges for service DS, FS and PS
respectively. To reduce the number of remote queries, we could compute the box hull
of all BOX constraints first. We first pose three queries, “what are the DS/FS/PS that
respond under 2/∞/∞ seconds”, which ask for service combinations in the box hull of
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Fig. 8. Component monitoring and re-
covery framework

1: function RECOVERY(BS, te)
2: distance ← empty map
3: for all B ∈ BS do
4: distance(B) ← 0
5: for all [li, ui] ∈ B do
6: if te(i) < li ∨ te(i) > ui then
7: distance(B) ← distance(B) + 1

8: return argminB′∈BS(distance(B′))

Fig. 9. Algorithm for generating best recovery plans

B1, B2 and B3, i.e., ([0, 2), [0,∞), [0,∞)). In general, we only need k remote search
queries for compositions of k component services. However, the box hull contains infea-
sible combinations which need to be filtered locally by examining each BOX constraint.

Runtime Adaptation and Recovery. The performance of real-time component-based
systems often varies subject to environmental factors over time. It is thus a common
practice for such systems to monitor themselves and recover from erroneous behaviors.
Fig. 8 depicts a runtime monitoring and recovery framework able to detect violations of
timing requirements and suggest efficient recovery strategies. GTR is first used to gen-
erate monolithic LTR constraints with which we can compute the initial estimation of
the ULTR model. At runtime, the Monitoring and Adaptation (MA) module monitors
both the system-level and the component-level response times. The latter are checked
against the ULTR model and there are two possibilities when it is violated: (1) The sys-
tem response time also violates GTR which indicates a real failure. Recovery strategies
are then generated and used to instruct the execution engine to recover. (2) GTR is not
violated and a false negative is caught. A way to address this problem is to use the false
negative to refine the ULTR model and produce a more precise estimation of LTR con-
straints. The runtime refinement is done via a simple MAXCUBE call which computes
the largest hypercube containing the false negative point.

ULTR can be used to generate best recovery strategies. A best recovery strategy is
a set of plans requiring a minimum number of component replacements to adapt to
the environment changes and put the system back into desired state where the timing
requirements are satisfied. Fig. 9 gives an algorithm RECOVERY for generating such
strategies. The ULTR model consists of a set of disjoint BOX constraints BS, and the
search for recovery plans can be done in a single traverse of this set. Vector te ∈ Rk

contains the response times for component services during an execution of composite
service where the GTR is violated. For each BOX constraint B in BS, we compute its
distance (i.e., the number of services that need to be replaced in order to satisfy B) from
te by simply comparing the service response time to the corresponding lower and upper
bound (Lines 5-7). After the traversal, the function returns a subset of BS that has the
shortest distance from te (Line 8).

In most cases, the recovery plan with the shortest distance is not unique. In the SMIS
example, suppose a detected violation has the response time te = (0.5, 1.5, 1.5). There
are two BOX constraints in BS with distance 1 to te, i.e., B1 = ([0, 1), [0,∞), [0, 1))
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and B2 = ([0, 1), [0, 1), [1,∞)), representing two alternative best recovery plans. The
execution engine can either replace FS or PS with a substitute that responds under 1
second. With multiple options, the adaptation module can take other QoS parameters
(e.g., price) into consideration when making the decision.

5 Implementation and Experiences

5.1 Implementation

We have implemented the ULTR algorithm in C++, using the Z3 SMT solver [16]
for satisfiability queries and quantifier elimination. A number of off-the-shelf im-
plementations for computing Lubf (ϕ) exist, including SYMBA [14] and OPTMATH-
SAT [20]. We used the latter. Our implementation accepts an LTR formula writ-
ten in the standard SMT-LIB2 [6] format and computes the ULTR model as
a set of BOXES BS. The source codes of the prototype can be obtained from
http://www.cs.utoronto.ca/~liyi/ultr/.

In the sampling process, we give priority to hypercubes adjacent to the existing sam-
ples so that they can be merged into a larger BOX. We apply INFCUBE periodically and
observe the growth of BS. We opportunistically pick the directions where new samples
are consecutively obtained, since such directions are often unbounded. These optimiza-
tions and heuristics are useful in shortening the time required for convergence.

5.2 Experiences

We performed a series of experiments in order to evaluate the ULTR approach ap-
plied for the management of timing requirements during the design and monitoring
of component-based systems. Specifically, we aimed to answer the following research
questions: RQ1: How effective are the ULTR models for the software component se-
lection? RQ2: How efficient are the recovery strategies generated by ULTR models?

Subjects. To answer these questions, we designed three case studies on real-world Web
service compositions5 as our subjects which include a stock quotes service (described
in Sec. 2), a computer purchasing service and a travel booking service.

Computer Purchasing Service (CPS). The goal of a computer purchasing service (CPS)
(e.g., Dell.com) is to allow a user to purchase a computer online using a credit card.
CPS uses five component services: Shipment (SS), Logistic (LS), Inventory (IS), Man-
ufacture (MS), and Billing (BS). The global timing requirement of CPS is to respond
within 1.6 seconds. LTR computed for CPS contains four time variables.

Travel Booking Services (TBS). The goal of TBS (such as Booking.com) is to provide
a combined flight and hotel booking service by integrating two independent existing
services. TBS provides an SLA for its subscribed users, promising a response within
1 second after receiving a request. TBS has five component services: user validation
(VS), flight (FS), backup flight (FSbak), hotel (HS) and backup hotel (HSbak). LTR for
TBS contains four time variables.

5 Details of the workflows can be found in [21].

http://www.cs.utoronto.ca/~liyi/ultr/
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Table 1. Statistics of Web services in QWS

Service Types Quantity
Response Time (ms)

MAX. MIN. AVG. STD.

Stock Quotes 13 1,939 67 446 574
Online Data Storage 9 569 144 298 154

Flight Schedule 10 1,212 100 438 330
Hotel Booking 6 440 139 256 104

Online Billing & Payment 13 495 124 105 116
Inventory & Logistic Service 14 4,758 108 545 1,216

Shipping Service 6 278 65 193 84

Dataset. To reflect the actual response times of Web services in our experiments, we
used a publicly available Quality of Web Service (QWS) dataset [1]. QWS contains de-
tailed QoS measurements for a set of 2,507 real Web services collected using the Web
Service Crawler Engine (WSCE) [2] from public sources including Universal Descrip-
tion, Discovery, and Integration (UDDI) registries6, search engines, and service portals.
Each service has 9 parameters (including response time, availability, throughput, etc.)
measured using commercial benchmark tools over a 6-day period in 2008.

We manually categorized services from the dataset according to their service types7.
The statistics for each category is given in Table 1. For example, there are 10 flight
scheduling services which map to FS and FSbak in the TBS example with an average re-
sponse time of 438ms and a standard deviation of 330ms. The maximum and minimum
response times are 1212ms and 100ms, respectively.

Methodology. For each case study, we compute its ULTR model using the proposed
technique setting the precision level ω to 0.05, which should be adjusted accordingly
to balance the trade-off between precision and efficiency of the model. We evaluate the
quality of the ULTR models in terms of the percentage of false negatives produced.
Then we simulate a large number of timing requirement violations and examine the
recovery strategies generated by the MA module. The experiments were conducted on
a computer running Linux with an Intel i5 3.1GHz processor and 4GB of RAM.

RQ1: Effectiveness of ULTR in component selection. To achieve component-level in-
dependence, the ULTR approach loses information on the relationship among compo-
nents. We evaluate the effectiveness of the ULTR model applied to component selection
as its precision of approximating the original LTR constraints. Since many of the ULTR
models are unbounded (i.e., there is no upper bound for at least one dimension), it is not
possible to compute the precision analytically through comparison of the hypervolume
(the volumes of both ULTR model and LTR model are infinite in this case). Therefore,
we study the precision empirically by defining it as the number of service combinations
preserved from the original LTR, i.e.,

6 http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
7 We ignored those services for which the semantics could not be easily inferred from their

names or WSDL descriptions.

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
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Fig. 10. Precision of ULTR models applied in case studies. Te is the time taken by enumerating
all service combinations. The selection time taken by ULTR is negligible.

Precision(BS) =
number of combinations satisfied by BS
number of combinations satisfied by ϕ

× 100%.

The number of service combinations satisfied by ϕ is computed by checking the satisfi-
ability of the LTR constraints using Z3. The satisfiability of BS can be verified by eval-
uating the BOX constraints through simple pairwise comparisons. We used the services
in QWS as the target service registry. In order to get statistically significant results, we
also randomly generated 10 larger sets (RAND), where each category contains between
16 and 30 services (roughly double the size of QWS), using the Gaussian distribution
with the mean and variance recorded in Table 1. The precision results for RAND were
obtained by taking the average across the 10 sets.

Results. The experimental results are shown in Fig. 10. The horizontal and vertical axes
represent the size of the ULTR model (|BS|) and the precision achieved at that point,
respectively. The precision for SMIS (Fig. 10a) and TBS (Fig. 10b) quickly reaches
∼100% when the size of BS increases to 5, without requiring runtime refinement.
However, the CPS example exhibits a very different behavior. The ULTR model has
good precision results on the QWS set but only achieves ∼60% precision on the RAND

set (Fig. 10c). A closer look reveals that the structure of the CPS composition im-
poses much stronger dependencies among component services than the other two. For
example, LTR of CPS contains atomic constraints over all four services, and such re-
lationships can hardly be preserved in the BOX domain for the dimension-independent
nature of BOX. A remedy for the information loss during the approximation is runtime
refinement (Cf. Sec. 4) which is able to restore such information when false negatives
are detected during execution.

Furthermore, the time taken by enumerating and evaluating all service combinations
(Te in Fig. 10) increases exponentially as the registry size grows. In contrast, the entire
service selection process using the ULTR model was almost instantaneous (<0.01s).

RQ2: Efficiency of ULTR in recovery strategy generation. The MA module initiates
a recovery generation when GTR is violated. Monolithic LTR constraints do not allow
pinpointing the actual causes of violations. Without the additional knowledge, the only
possible recovery strategy, denoted by LTR, is to replace all delayed components.
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Table 2. Comparison of recovery strategies generated by ULTR and LTR models

LTR ULTR
SMIS (3 comp.) TBS (4 comp.) CPS (4 comp.)
COUNT D̄(S) COUNT D̄(S) COUNT D̄(S)

2
1 5,079 1.29 4,507 0.78 3,224 0.73
2 72 1.53 644 0.78 1,989 1.08

3
1 4,502 1.63 3,225 1.16 881 0.76
2 649 2.17 1,926 1.18 3,353 1.18
3 0 - 0 - 912 1.63

4

1 - - 232 1.21 139 0.78
2 - - 4,919 1.57 1,653 1.20
3 - - 0 - 2,962 1.69
4 - - 0 - 139 2.22

For each case study, we randomly chose 50 service combinations that originally sat-
isfied the ULTR constraints and simulated service delays by adding a positive random
variable D (uniformly distributed between 0.1s and 3s) to some of the response times.
We simulated 100 violations for each service combination to get ∼15K violations per
case study. and compared the length of the best recovery strategies generated using
ULTR (denoted by ULTR) with LTR.

Results. The experimental results are summarized in Table 2, in which the columns
“LTR”, “ULTR” and “COUNT” list the length of the recovery strategies generated using
the monolithic LTR approach, the best strategies generated using ULTR models and
the number of violations recovered by the corresponding best strategies, respectively.
For example, SMIS consists of three components and when two of them are delayed, in
5,079 out of 5,151 cases (98.6%) the system can be recovered by replacing only a single
component, whereas LTR would replace both. When all three services are delayed,
the best strategies are always shorter in comparison with the naive approach, i.e., no
strategy of length 3 is generated. Our experiments clearly show that the best strategies
have shorter lengths than the naive approach in the absolute majority of cases.

In Table 2, the column “D̄” shows the average delay of component services. The
results indicate a correlation between D̄ and the length of the best strategies COUNT.
That is, the longer the delays, the harder it is to restore the composite system back to
the desired state with a small number of replacements. However, the TBS example is
a notable exception: it always has best strategies of length at most 2. This has to do
with the structure of the composition: if one of the two groups (FS and HS; or FSbak

and HSbak) satisfies its requirements, then the overall time requirement is also satisfied.
The ULTR approach is able to detect this connection and therefore always produces the
shortest repairs.

Recall that we are able to generate multiple best strategies for each violation, but the
services required not necessarily exist in the registry. For instance, there is no Inventory
Service that responds within 0.1 seconds which is required by some of the best strate-
gies. In our experiment, we have observed that the best strategies could not be executed
with the given registry in 31 out of ∼15K cases, which is acceptably rare.
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In summary, the ULTR models produced for the three case studies are effective in
component selection despite the relatively low precision in the CPS example. More
importantly, we have also shown that even with the under-approximated models, we are
able to generate shorter recovery strategies that were otherwise not possible to find.

Experiences on Scalability. As mentioned, the symbolic optimization tools that we
used only accept quantifier-free constraint formulas. The preprocessing step requires
quantifier elimination on the linear real arithmetic theory, which is known to be expen-
sive. In practice, the preprocessing of the universally quantified formula θ (Cf. Sec. 3)
becomes the bottleneck of the whole sampling process even if it is invoked only once. In
our experiment, we gradually increased the number of components in a standard com-
position structure and observed that the quantifier elimination interface of Z3 is able to
handle efficiently compositions with less than 8 components.

Threats to Validity. The first threat is that there are a few random factors in our exper-
iments: the randomly generated Web service registries and GTR violations. To mitigate
it, we repeated our experiments a number of times and reported on the averages in the
hope to reflect the general cases. The global timing requirements given in the case stud-
ies also have an impact on the precision of the ULTR models. Since if the GTR chosen
is impractical (either too restrictive or too relaxed), the number of satisfying service
combinations can be very skewed (e.g., 0 or everything). In order to mitigate the second
threat, we selected GTR so that such cases do not happen in the experiments.

6 Related Work

Computing Under-approximation. Our technique is related to the computation of
hyperrectangle-shaped under-approximation for polyhedra. Sankaranarayanan et. al [19]
used a random ray shooting technique to find a large enough hyperrectangle over Rn in
convex polyhedra which encodes a conjunction of linear program path conditions. The
ray shooting method first finds a random point t0 within the polyhedron and treats it
as a hyperrectangle with zero volume. Then it tries to expand the hyperrectangle while
satisfying all constraints by shooting rays to different directions in a fixed order. This
process is repeated several times, and the largest hyperrectangle is returned. The under-
approximation technique is used to estimate the lower bound for the probability of a
set of paths in probabilistic programs. Compared with their method which involves
randomness, our algorithm guarantees the maximality of samples and thus ensures the
precision level.

Another related problem is computing a maximal inscribed isothetic rectangle in a
polygon. An Θ(log n) algorithm for computing the maximum area rectangle that has
all sides parallel to the coordinate axises and is inscribed in a convex n-gon is given
in [4]. This algorithm only works in the 2-dimensional space and has the restriction
that the polygon has to be convex. In contrast, by exploiting the power of SMT solvers,
our method generalizes to n-dimensional non-convex polyhedra, which is required to
express complex timing constraints. Although each single hypercube we computed has
equal heights in all dimensions, the disjunctive collection of hypercubes gives us more
flexibility in under-approximating non-convex polyhedra.
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QoS-Based Service Selection. This work is also related to service selection under QoS
constraints. The many techniques proposed for this in the literature can be loosely di-
vided into service selection with direct access to registries [7,5,23,3] and broker-based
service discovery [1,17]. The former assumes the visibility of all concrete services and
their QoS attributes (e.g., price, response time and availability) and finds the optimal
concrete services. For example, Zeng et. al [23] present an approach that makes use of
mixed integer programming (MIP) to dynamically search for the best service combi-
nations under both local and global QoS constraints. [7] formulated service selection
as a problem solved by Genetic Algorithms (GA) which allow for non-linear objective
functions and provide better scalability.

The broker-based approaches [1,17] delegate the measurement and ranking of QoS
parameters to a third-party service discovery agent. This allows users to specify non-
functional QoS requirements and find the best services that satisfy the component-level
requirements through the broker. [17] introduced a WS-QOS broker architecture which
discovers Web services beyond traditional key-word searching. The framework verifies
and certifies QoS properties of services and provides services that meet the consumers’
requirements through a series of matching, ranking and selection algorithms.

Our work focuses on the timing requirements and is applicable under the consumer-
broker-provider service selection model which does not assume the availability of all
service attributes. We enable point-wise component selection by lifting the dependen-
cies among components. Through sophisticated timing analysis, we extend the broker-
based architecture by allowing service discovery to admit not only the component-level
but also the system-level global requirements.

Runtime Monitoring and Adaptation. Much work has been done in the area of run-
time QoS monitoring and self-adaptation of component-based systems. For example,
the KAMI approach [11] combines two basic techniques that support predictions and
analysis of QoS properties, namely, measurement and modeling. KAMI keeps live
Bayesian estimator models at runtime for QoS parameter predication and refines the
models through the direct measurement of QoS attributes. We adopt a similar approach
by modeling the timing requirements using an under-approximation and making the
model progressively more accurate when discrepancies are detected at runtime. The
difference of our work is that we use the ULTR model to generate best adaptation
strategies while the approaches in [11] use a predefined violation handler.

A number of other service monitoring and adaptation frameworks including MOSES
[8] and VieDAME [15] use specific service selection algorithms to choose the optimal
replacement when a service failure is found. None of them address the problem of
“best adaptation strategy” in terms of the number of services to replace when there are
multiple delays of component services. Their techniques in replacement optimization is
orthogonal to our approach and can be used to choose the optimal one when multiple
best strategies are generated.

7 Conclusions and Future Work

In this paper, we presented the ULTR approach which decomposes the monolithic
representation of LTR constraints into independent timing contracts over software
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components. Our method is based on an iterative sampling algorithm using SMT solvers.
The ULTR algorithm computes the under-approximation of LTR in the BOX domain
which guarantees local precision level. We showed how the ULTR models can be ap-
plied in component selection and runtime adaption strategy generation under timing
requirements. Our experience demonstrates the applicability and effectiveness of the
ULTR approach in real-world service compositions.

We see many avenues for future work. First, we would like to extend our approach
to allow handling requirements containing QoS attributes other than time. This requires
defining an automatic synthesis procedure for those requirements and their efficient
encoding in linear real arithmetic. Another direction is generalizing the best under-
approximation algorithm to allow sampling of arbitrary hyperrectangles. This relies
on the development of a non-linear symbolic optimization procedure. Finally, we are
interested in lifting the scalability limitations by avoiding quantifier elimination through
approximating best under-approximation computations.

Acknowledgement. We are grateful for the valuable discussions and helpful comments
from Aws Albarghouthi and Zachary Kincaid.

References

1. Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services. In: Proc.
of ICCCN 2007, pp. 529–534. IEEE (2007)

2. Al-Masri, E., Mahmoud, Q.H.: Investigating Web Services on the World Wide Web. In: Proc.
of WWW 2008, pp. 795–804 (2008)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-Based Web Service
Composition. In: Proc. of WWW 2010, pp. 11–20. ACM (2010)

4. Alt, H., Hsu, D., Snoeyink, J.: Computing the Largest Inscribed Isothetic Rectangle. In: Proc.
of CCCG 1995, pp. 67–72 (1995)

5. Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selection. In:
Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46. Springer, Heidelberg
(2006)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2010), http://www.SMT-LIB.org

7. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service
Composition Based on Genetic Algorithms. In: Proc. GECCO 2005, pp. 1069–1075 (2005)

8. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Mirandola, R.: Moses:
A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE TSE
(2012)

9. Carminati, B., Ferrari, E., Hung, P.C.: Exploring Privacy Issues in Web Services Discovery
Agencies. IEEE Security & Privacy 3(5), 14–21 (2005)

10. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Proc. of
the Colloque sur la Programmation (1976)

11. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model Evolution by Run-time Param-
eter Adaptation. In: Proc. of ICSE 2009, pp. 111–121. IEEE (2009)

12. Gurfinkel, A., Chaki, S.: BOXES: A Symbolic Abstract Domain of Boxes. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg (2010)

13. Isovic, D., Norström, C.: Components in Real-time Systems. In: Proc. of ICRTCSA 2002
(2002)

http://www.SMT-LIB.org


Management of Time Requirements in Component-Based Systems 415

14. Li, Y., Albarghouthi, A., Gurfinkel, A., Kincaid, Z., Chechik, M.: Symbolic Optimization
with SMT Solvers. In: Proc. of POPL 2014 (2014)

15. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adaptation for
WS-BPEL. In: Proc. of WWW 2008, pp. 815–824. ACM (2008)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

17. Rajendran, T., Balasubramanie, P., Cherian, R.: An Efficient WS-QoS Broker Based Archi-
tecture for Web Services Selection. Int. J. of Computer Applications 1(9), 110–115 (2010)

18. Salah, R.B., Bozga, M., Maler, O.: On Timed Components and Their Abstraction. In: Proc.
of SAVCBS 2007, pp. 63–71 (2007)

19. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static Analysis for Probabilistic Programs:
Inferring Whole Program Properties from Finitely Many Paths. In: Proc. of POPL 2013, New
York, NY, USA, pp. 447–458 (2013)

20. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 484–498. Springer, Hei-
delberg (2012)

21. Tan, T.H., André, E., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic Synthesis of Local
Time Requirement for Service Composition. In: Proc. of ICSE 2013, pp. 542–551 (2013)

22. Wang, S., Rho, S., Mai, Z., Bettati, R., Zhao, W.: Real-time Component-based Systems. In:
Proc. of RTETAS 2005, pp. 428–437 (2005)

23. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
Middleware for Web Services Composition. IEEE TSE 30(5), 311–327 (2004)


	Management of Time Requirements  in Component-Based Systems
	Introduction
	Approach at a Glance
	The uLTR Algorithm
	Definitions
	Best Under-approximation
	Iterative Hypercube Sampling

	Applications
	Implementation and Experiences
	Implementation
	Experiences

	Related Work
	Conclusions and Future Work


