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ABSTRACT
Malicious JavaScript is one of the biggest threats in cyber
security. Existing research and anti-virus products mainly
focus on detection of JavaScript malware rather than classi-
fication. Usually, the detection will simply report the mal-
ware family name without elaborating details about attacks
conducted by the malware. Worse yet, the reported fam-
ily name may differ from one tool to another due to the
different naming conventions. In this paper, we propose a
hybrid approach to perform JavaScript malware detection
and classification in an accurate and efficient way, which
could not only explain the attack model but also potentially
discover new malware variants and new vulnerabilities. Our
approach starts with machine learning techniques to detect
JavaScript malware using predicative features of textual in-
formation, program structures and risky function calls. For
the detected malware, we classify them into eight known
attack types according to their attack feature vector or dy-
namic execution traces by using machine learning and dy-
namic program analysis respectively. We implement our ap-
proach in a tool named JSDC, and conduct large-scale evalu-
ations to show its effectiveness. The controlled experiments
(with 942 malware) show that JSDC gives low false positive
rate (0.2123%) and low false negative rate (0.8492%), com-
pared with other tools. We further apply JSDC on 1,400,000
real-world JavaScript with over 1,500 malware reported, for
which many anti-virus tools failed. Lastly, JSDC can effec-
tively and accurately classify these detected malwares into
either attack types.

1. INTRODUCTION
JavaScript is a widely-used client-side scripting language

that provides active and dynamic content on the Internet.
According to Microsoft’s recent security report (Figure 81
in [12]), the prevalence of JavaScript leads to the largest
number of malware detected by Microsoft in the first half
year of 2013. Most of users typically rely on signature-based
anti-virus products to detect malware. However, signature-
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based detection is not accurate, as it is neither resistant to
obfuscation nor applicable to evolving variants of the same
malware.

Detection of malicious JavaScript code can be classified
into two lines: dynamic approaches and static approaches.
Dynamic approaches are mostly based on low-interaction
honey clients [25] and high-interaction honey clients [37, 34].
The problem of using honey client lies in the difficulty of set-
ting up a virtual environment that captures the exploitations
of all possible plug-ins. Most importantly, honey clients are
extremely resource intensive, and it is not affordable to scan
millions of scripts. Static approaches mainly adopt machine
learning techniques to capture characteristics of malicious
scripts. Most of them use obfuscated text information ([16,
27]), syntax information (e.g., AST [18, 26]) or (partial) dy-
namic information (e.g., API call [17, 33]) as the predicative
features for classifying malicious and benign code.

Static and dynamic approaches both have merits and draw-
backs. Dynamic approaches are effective, but not scalable.
They are usually designed for specific attack types, not for
general malware detection. Static approaches based on ma-
chine learning techniques or program similarity analysis are
efficient, but with high false negative ratio. Besides, machine
learning based detection can neither be used to model attack
behaviors nor identify new attacks from emerging malware.

To our best knowledge, none of the aforementioned tools
go beyond the mere detection of JavaScript malware. To-
wards an insightful summary and analysis of malware evo-
lution trend, it is desirable to detect malware and further
classify them according to the exploited attack vector and
the corresponding attack behaviors. Considering the emer-
gence of numerous new malware or their variants, knowing
the attack type and the attack vector will greatly help do-
main experts for further analysis. Such an automated classi-
fication can significantly speed up the overall response to the
malware and even shorten the time to discover the zero-day
attacks or unknown vulnerabilities.

In this paper, we propose an automatic approach to per-
form JavaScript malware detection and classification by com-
bining static analysis (via machine learning) and dynamic
analysis to achieve both scalability and accuracy. To effi-
ciently detect and classify malware, we propose a two-phase
classification. The first phase is to classify malicious Java-
Script samples from benign ones, while the second phase is
to discover the attack type that a malicious script belongs
to. In the first phase, we extract and analyze features that
are generally predictive for malicious scripts. To address the
obfuscation and dynamic code generation problems, we ex-
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tend HtmlUnit [1] to obtain the final unpacked code. We
extract features from document elements, source code and
sensitive function call patterns. In the second phase, we fo-
cus on the features that are representative and unique for
each attack type. To identify unique features relevant to
a certain attack type, the inter-script analysis is adopted
to find API usage patterns, which can serve as features of
different attack types. For the suspicious candidates that
fall into grey zone (uncertain in classification), we adopt the
dynamic analysis to unveil the practical behaviors of the at-
tack and match it to existing attack behavior models. For
dynamic analysis, we instrument Firefox to capture the at-
tack behaviors of malicious code. Holistically, static analysis
assures the scalability while dynamic analysis on uncertain
scripts improves the accuracy.

To sum up, this paper makes the following contributions:

• We propose an effective machine learning approach for
JavaScript malware detection with predictive features
like commenting style based on textual analysis and
the feature of function calls with security risks based
program analysis.

• We propose a combined approach for JavaScript mal-
ware classification by firstly using the machine learn-
ing approach with predictive features like function call
patterns and the times of external references, and then
further improving the accuracy using dynamic pro-
gram analysis. Our approach achieves the scalability
and accuracy.

• We develop the semantic models of the eight known
JavaScript attacks in the form of Deterministic Finite
Automata, which can not only help to explain the at-
tack behavior, but also discover new malware variants
and new vulnerabilities if the attack does not fall into
any of the eight attack models.

• We implement out approach in a complete toolset and
evaluate it using 20,000 web sites with 1,400,000 scripts.
The result shows that our approach beats most main-
stream anti-virus tools, with high accuracy and promis-
ing performance.

2. JAVASCRIPT MALWARE CATEGORIZA-
TION

Computer Antivirus Research Organization gives each new
discovered JavaScript malware a unique family name for
identification, e.g., TrojWare.JS.Agent.G. Some organiza-
tions adopt it while others may have their own naming con-
ventions. Thus, classification information provided by dif-
ferent organizations are neither congruent nor accurate to
describe the attacks that the malware can launch. Besides,
family-based classification provides no hints on the vulner-
ability exploited by the malware. A meaningful classifica-
tion according to the vulnerability and the corresponding
exploits is critical, especially for identifying new attacks.
Such classification should be based on attack behaviors of
the malware that exploit the vulnerability.

In accordance with Kaspersky Security Bulletin Overall
Statistics 2013 [8], attacks targeting JRE, Adobe Acrobat
Reader, browser, Adobe Flash and so on account up more
than 95% of attacks launched by JavaScript code. Attack
vector could be a good standard to classification, since it

indicates location of vulnerability and the same type shares
similar behavior pattern. We list the eight most common
JavaScript attack types according to attack vectors as fol-
lows.

• Type I: Attack targeting browser vulnerabilities. This
type of attack targets potential vulnerabilities (like
CVE-2014-1567) of a browser of certain version or with
certain plug-ins, and then exploits such vulnerabilities
to trigger memory corruption. Consequently, it will
lead to the malicious control of instruction registers.

• Type II: Browser hijacking attack. Browser hijacking is
the modification of a web browser’s settings performed
without the user’s permission. A browser hijacker may
replace the existing home page, error page, or search
page with its own. For instance, CVE-2007-2378 in the
Google Web Toolkit (GWT) framework is a JavaScript
hijacking attack, which illegally tracks personal data.

• Type III: Attack targeting Adobe Flash. ActionScript
used in Adobe Flash and Adobe Air has a flaw of al-
lowing chunks allocation in the heap. An exploit page
uses vulnerabilities like CVE-2012-1535 to manipulate
the heap layout, which induces heap spray attacks. Fi-
nally, the memory corruption results in running a ROP
(Return Oriented Programming) chain.

• Type IV: Attack targeting JRE. Attacks take advan-
tage of vulnerabilities in Oracle’s J2SE JDK and JRE.
The JVM security depends on the byte code verifier,
the class loader, and the security manager. For in-
stance, the vulnerability in Java 7 Update 11 (CVE-
2013-1489) allows attackers to bypass all security mech-
anisms in the Java browser plug-in.

• Type V: Attack based on multimedia. Attacks are car-
ried by multimedia files or files in other format sup-
ported by browsers, e.g., CSS based attacks. Gen-
erally, malicious downloadable resources (e.g., image
and font files) can be deliberately designed to exploit
vulnerabilities like CVE-2008-5506 to consume the net-
work capacity of visitors, launch CSRF attacks, spy on
visitors or run distributed denial-of-service (DDoS).

• Type VI: Attack targeting Adobe PDF reader. Vulner-
ability in Adobe Reader is being used by active attacks
targeting individuals with malicious PDF files. For ex-
ample, vulnerabilities like CVE-2011-2462 could cause
a crash and potentially allow an attacker to take con-
trol of the affected system.

• Type VII: Malicious redirecting attack. Cybercrimi-
nals are constantly thinking up new ways to redirect
unsuspecting visitors to their drive-by landing page. It
includes “Meta Refresh redirecting”, “JavaScript Redi-
rect”, “CSS redirecting”, “OnError redirecting” and so
on. This attack type is generally based on CWE-601.

• Type VIII: Attack based on Web attack toolkits, e.g.
Blacole. Attack toolkits are increasingly available to
an unskilled black market that is eager to participate in
the speedy spread of malware. According to a recent
report [2], Symantec reported that 61% of observed
web-based threat activity could be directly attributed
to attack kits.

Each attack type aims at representing a unique attack be-
havior that exploits a certain attack vector or share some
certain event routine, e.g., attack type III, IV , V and VI
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scan the vulnerabilities in different origins. The above classi-
fication is at a more general concept level than family-based
classification. For example, the popular malware family Tro-
jan.JS.Blacole belongs to the attack type VIII, while the
family Trojan.JS.Iframe is a malware of type VII. However,
compared with the general term of attack type like heap
spray attack [32], our classification is more specific as we
consider attack vector of a heap spray. A heap spray attack
can be an attack of type III, IV or V.

3. SYSTEM OVERVIEW OF JSDC
In this section, we sketch the overall workflow of our two-

phase approach: JSDC, as depicted in Figure 1. The first
phase is to identify the malicious (including highly suspi-
cious) JavaScript snippets. Given malicious JavaScript snip-
pets, the second phase is to further classify them according
to their attack type. Thus, the classification process is ap-
plied twice, based on the features for malware detection and
attack type classification. For the second classification, if
there still exist any suspicious fragments that fall into the
grey zone (the probability of a script being a certain attack
type is non-dominant), dynamic confirmation is applied to
execute this script and to capture its execution trace for
further analysis.

We use the crawler Heritrix [29], to download web pages
for detection. After Heritrix downloads a complete web page
with HTML and JavaScript, we extract both internal and
external JavaScript snippets. For the ease of feature extrac-
tion based on program information, we use HtmlUnit [1],
a GUI-Less emulator of a full browser environment, which
has fairly good JavaScript support, to obtain the unpacked
code (e.g., the code dynamically generated during execu-
tion). Once we address the problem of obfuscation and dy-
namic code generation, we extract features from the source
code and AST of the final unpacked code. Note that Htm-
lUnit is just used to parse and interpret the JavaScript code,
without doing the actual rendering job. Thus, this step is
regarded as mostly-static analysis [18].

With the training set of representative malicious and be-
nign samples, we propose features that are predictive of ma-
licious or benign intent (see Section 4). Firstly, textual fea-
tures of the code are extracted based on textual analysis—
word size, n-gram model, frequency of characters, comment-
ing style, and entropy are extracted. After textual features
are extracted, we use HtmlUnit to obtain the unpacked code,
from which features about the program information can be
extracted. The program information includes HTML prop-
erties and Document Object Model (DOM) operations, and
the API usage patterns (i.e., patterns of function calls) in
the JavaScript snippet. In addition, we also extract AST-
based features, e.g., the tree depth, the pair of type and text
from some AST nodes [18]. All these non-textual features
are extracted to characterize the malicious behaviors.

To further distinguish eight different types of attacks, we
reuse part of features about the program information for
detection. Besides, we propose new features based on the
vulnerability exploits or attack behaviors of different attack
types. We identify the frequently used functions in different
attack types. By considering parameters of these functions,
we derive the features based on the pair of function and its
parameters type. Additionally, features on the API usage
patterns and inter-script references are also used.

Figure 1: The work-flow of JSDC

Before the actual application of our approach in detec-
tion, we need to train the classifiers for predication. We
have trained and evaluated each of the used classifiers using
k-fold cross validation (CV). The usage of CV is mainly in
settings where our goal is prediction, and we aim to estimate
the accuracy of a predictive model for malware detection and
classification. For the first classifier for malware detection,
the training set includes both benign and malicious Java-
Script snippets, and each snippet is labelled as malicious or
benign. For the second classifier for malware classification
according to attack type, the training set only includes ma-
licious snippets and each of them is labelled with a known
attack type.

During the process of classifying malicious scripts into dif-
ferent attack types, there are some uncertain results that fall
into the grey zone (the classification results show that the
probability of a script being a certain attack type is not
significantly different from that of being others). This indi-
cates that such scripts are not really similar to any existing
malicious samples. For those uncertain ones, a further dy-
namic analysis is required to execute them and to capture
their execution traces at runtime. We have some predefined
or learned behaviour models from execution traces of the
existing types of attack. More details on inferring attack
models in DFAs and checking malware candidate with these
models can be found in Section 5.

4. DETAILS OF FEATURE EXTRACTION
JavaScript owns dynamic features that incur security risks

and make static analysis fail, e.g., no type checking, DOM
based cross-cite scripting, client side open-redirecting and
the dynamic code of Ajax [22]. JavaScript’s flexibility is
reflected in modifying everything ranging from an object’s
fields and methods to its parent object. Besides, Java-
Script’s dynamics allow to access and modify shared objects,
and to dynamically run the injected code via functions like
eval(), setTimeout().

Obfuscation is widely adopted to hide the semantics of
the JavaScript code from the human efforts’ check. Benign
JavaScript applications make use of obfuscation to protect
intellectual property, while malicious JavaScript uses obfus-
cation (even multiple levels of obfuscations) to hide its true
intent. The flexibility, dynamic features and obfuscation
have made the malicious JavaScript code unreadable for hu-
man experts. Meanwhile, these characteristics also fail the
purely-static approaches to detect malware accurately.

To extract representative features that cover the above
characteristics of JavaScript, we adopt three types of analy-
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Figure 2: Feature extraction process

sis: textual, inner-script and inter-script analysis (see Figure
2). Textual analysis provides hints of the obfuscated attacks
(see Section 4.1). Inner-script analysis (see Section 4.2)
mainly provides program information on ASTs or function
calls with security risks. Function call patterns and inter-
script analysis (see Section 4.3) focus on the classification of
attack types. The malicious sample s1 in Figure 3, which
is an obfuscated type I attack that loads external scripts, is
used as an illustrative example.

Note that we annotate features only for detection with
†, features only for attack type classification with ‡, and
features for both purposes with ∗.

4.1 Textual Analysis
Textual analysis is applied to indicate both obfuscation

and maliciousness, as it can tell the difference between ob-
fuscated malicious scripts and obfuscated benign ones [16].

Longest word size†. Obfuscated JavaScript code usu-
ally contains long words, which signals the existence of en-
coding or encryption that is used for parameters of the func-
tion like eval. A script with very long word size (e.g., larger
than 350 words [16]) is likely to be obfuscated. For example,
in the obfuscated code in Figure 3(a), the size of the longest
word is 814. After tokenization, the longest token size is
calculated.

Entropy†. Entropy is a measure of unpredictability of in-
formation content, and it is used to analyze the distribution
of different characters. Entropy is calculated as follows:

H(X) = −
N∑
i=1

(
xi

T
)log10(

xi

T
)

{
X = {xi, i = 0, 1, ..., N}
T =

∑N
i=1 xi

(1)

where xi is the count of each characters and T counts all
characters. Note that we omit the calculation of the count
for space character since it is not part of the JavaScript
code contents. The obfuscated code typically has low en-
tropy than normal code, since it often contains repeated
characters. It has been experimented that the entropy for
obfuscated code is usually lower than 1.2, while the standard
code has entropy from 1.2–2.1 [16]. The obfuscated code of
s1 has entropy of 1.1.

Byte occurrence frequency of specific character†.
As obfuscated malicious code usually uses customized encod-
ing, and it tends to use excessively specific characters. We
use 1-gram model among n-gram model, to examine the oc-
currence frequency of characters (excluding the space char-
acter), which is equivalent to byte occurrence frequency. The
byte occurrence is then divided by total characters for nor-
malization. For example, in the obfuscated code in Figure
3(a), the comma character represents the most frequently
used character (total of 232 characters), which represents a
quarter of the total characters.

(a) The original obfuscated version

(b) The HtmlUnit unpacked version

Figure 3: A malicious sample s1 of attack Type I

Commenting style†. There are two kinds of comment
annotations in JavaScript. ‘‘//’’ is for single-line comments
and ‘‘<!--. . . -->” for multiple-line or block comments. A
basic evasion technique involves the mixture of these two
kinds of comments. For example, the code in Figure 3(a)
uses a pair of tags <!-- and //-->, which is expected to be
commented out for execution, nevertheless, it is executed
due to the fault-tolerance of the browser. The value of this
feature records the occurrence frequency of such commenting
style, e.g., there is one occurrence for the code in Figure 3(a).

4.2 Inner-Script Program Analysis
A web-page contains multiple JavaScript snippets, some

are embedded (internal scripts), while some others are links
to other JavaScript fies (external scripts). Analysis of the
internal scripts are inner-script analysis, which is considered
heavy weight for analysis of all JavaScript snippets. We
delay the analysis of external scripts for inter-script analysis
(see Section 4.3).

For the unpacked code in Figure 3(b), features about the
program information are extracted to characterize the mali-
cious behaviors. The program information includes HTML
properties and Document Object Model (DOM) operations,
the API usage pattern (i.e., the pattern of function calls)
and AST-based features.

Function calls with security risks∗. Malicious Java-
Script are usually accomplished by means of code genera-
tion, redirecting and DOM operations at runtime. In Fig-
ure 4, we list the functions that are with security risks by
allowing dynamic code generation, loading or redirecting.
Nevertheless, the functions are not used alone but together
with some other assistant string operation functions (e.g.,
concat(), charCodeAt()) that can hide the malicious inten-
tion by encoding or encryption. We record the number of
occurrences of a function call as a numeric feature, e.g., fea-
ture String.fromCharCode() and feature eval() in Figure 3(b)
both have a value 1, as they are called only once.

AST features∗. We also consider hierarchical features
extracted from the ASTs of unpacked code, e.g. the depth of
the AST, the difference between the deepest depth of its sub-
trees and the shortest depth of its subtrees, the maximum

112



Function Name Function Type Possible Threats

eval()
Dynamic code execution Dynamic code generationwindow.setInterval()

window.setTimeout()

location.replace()
Change current URL Redirect to malicious URL

location.assign()

getUserAgent()
Check browser Target specific browser

getAppName()

getCookie()
Cookie access Manipulate Cookie

setCookie()

document.addEventListener()
Intercepting Events

Block user’s operation or
element.addEventListener() emulating

document.write()

DOM operation

element.changeAttribute()
document.writeln() Embed malicious script,
element.innerHTML() invisible java applets,
element.insertBefore() invisible iframe,
element.replaceChild() invisible silverlight, etc.
element.appendChild()

String.charAt()

String operation
String.charCodeAt() Hide intension, by
String.fromCharCode() encoding and encryption
String.indexOf()
String.split()

Figure 4: Functions with security risks
breadth and the versions of the AST during the generation
of the final unpacked code.

There exists many similar assignments and function calls
in the ASTs of malicious scripts—this reason leads to a large
value of AST depth and maximum breadth. Furthermore,
malicious scripts also use multiple levels of dynamic code
generation like eval(), i.e., the parameter of one eval function
call contains some other function call(s) like eval or docu-
ment.write. During the process of unpacking these functions
that support dynamic code generation, each time one such
function like eval is parsed and interpreted, a new version of
AST is built. Thus, by analysing the versions of ASTs, we
can calculate the times of doing unpacking for functions that
support dynamic code generation and loading in a script. Fi-
nally, the code in Figure 3(b) has an AST with a depth of
21, a width of 20 and a version number of 5.

Function call patterns‡. Different malicious attacks
take advantage of distinct vulnerability and have their own
behavior models. As API usage (or functional call) pattern
is usually adopted to model program behavior, function call
patterns can serve as the features predicating a possible type
of attack. For the different attack types of samples in the
training set, we apply frequent itemset mining on the func-
tion calls extracted from ASTs. A mined frequent itemset is
a set of function calls that appear together with a support
probability greater than a certain threshold. Specifically, we
separately apply frequent itemset mining for samples of each
attack type, and record all the maximum frequent itemsets
with support greater than 20% for each attack type. Finally,
10 mined patterns are manually confirmed as valid function
call patterns for the eight attack types.

In Figure 5, we show an example of function call patterns
found common in Figure 3(b) for type I attack. As the func-
tion newActiveXObject() and createXMLHTTPRequest() are
widely used by malware targeting vulnerability in ActiveX
components, this pattern captures behaviors of such attack.

4.3 Inter-Script Program Analysis
In inter-script analysis, we count external scripts from

other domains. In JSDC, we report malicious JavaScript
code at the unit of a code snippet inside <script/>. In
our training set, we find some of malicious samples are self-
contained in one code snippet of <script/> and do not re-
fer to other scripts to realize malicious intention. However,

Function call pattern: Intension:
unescape() obfuscation to evade checking
eval() dynamic generation
GetCookie() check Cookie
dateObject.toGMTString() generate time String used in cookie
SetCookie() set cookie to mark
document.write() generate dynamic document content
document.createElement() create new document element
element.appendChild() append new element to current one
newActiveXObject() create new Active object
createXMLHTTPRequest() download exploit file to local system

Figure 5: An exemplar function call pattern from
mining frequent itemsets in function calls

<script src="http://xxx.xxx.xxx/a.js"></script>
<script>
new_element=document.createElement("script");

new_element.setAttribute("type","text/javascript");

new_element.setAttribute("src","a.js");//

document.body.appendChild(new_element);

function b() {
a(); //a() is a function in a.js that contains malicious code

}
</script>

Figure 6: A malicious sample s2 that involves mul-
tiple JavaScript snippets

some malicious ones do not contain the actual malicious
code. Instead, they just exploit the vulnerability and call
some other third party scripts to accomplish the attack. For
this type of attack that relies on some other scripts, we pro-
pose to adopt the inter-script program analysis.

We extract the times of referring to external scripts as
numeric features. Besides, times of external function calls
or variable access are also recorded as different numeric fea-
tures. Our extension of HtmlUnit enables to parse and in-
terpret the external scripts referred by the current one. As
shown in Figure 6, the malicious attack refers to an exter-
nal script “a.js”, and it adds the “a.js” into its DOM as an
element. Meanwhile, the function b is actually calling the
malicious function a in “a.js” to launch the attack.

Miscellaneous and derived features‡. Given a suspi-
cious script, to characterize the dynamically generated code
or external scripts from other domains, we propose some
features for attack type classification: feature changeSRC
counts the number of changing of the src attribute (e.g.,
for <iframe src=”...”/> tag); feature changeSRC counts the
number of invocation of navigator.userAgent; derived statis-
tic feature domAndDynamicUsageCnt counts the number of
invocation for APIs that change DOM structure or support-
ing dynamic execution of JavaScript code in Figure 4; fea-
ture dynamicUsageContentLen stores the length of contents
that are passed as arguments to APIs that support dynamic
execution of JavaScript; lastly, feature referenceError counts
the number of failures in its reference of external scripts.
The usefulness of these features are discussed in Section 8.

Note that the inter-script program analysis is more com-
putationally costly, compared with inner-script program anal-
ysis, due to the increased size of scripts that need to be an-
alyzed. As inter-script analysis is only applicable to feature
extraction for classification of detected malware, the over-
heads in analysing the comparatively small size of detected
malicious are still acceptable in our approach.
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5. DYNAMIC CONFIRMATION
To capture the attack behaviors of JavaScript malware at

runtime, we propose to model and analyze JavaScript pro-
gram behaviors by focusing on browser-level system calls.
As system calls or actions (high level abstraction of simi-
lar system calls) are the interactions of a program with its
environment (i.e., the browser in our study), it is effective
to model program behaviors (including attack behaviors)
based on system calls or actions [19]. Further, we propose
to use Deterministic Finite Automata (DFA) to model at-
tack behaviors, which is motivated by the work on detecting
anomalous program behaviors based on Finite State Auto-
mate (FSA) [35]. The transitions of the DFA are actions,
i.e., the high-level abstraction of system calls.

In [35], the dynamic analysis approach has been presented
to automatically infer an FSA from a set of execution traces
of binary executables. In this study, we have the similar idea,
but we are modelling the attack behaviors of JavaScript mal-
ware based on browser-level system calls. Specifically, we
instrument Mozilla Firefox and capture the method calls to
Cross Platform Component Object Model (XPCOM) [10] as
browser-level system calls. So our implementation is Firefox
specific. The work-flow of dynamic confirmation is shown in
Figure 7. First, we execute malicious JavaScript samples to
get the training set of (both benign and malicious) execution
traces. One good thing to web-based malware detection is
no need for triggering. Generally, web-based malware are
triggered automatically once the web page is loaded. Sec-
ond, we perform a preprocessing to simplify these traces by
removing security irrelevant system calls (those are not re-
lated to security or permission issues). For a common system
call that happens in all malicious traces of the same attack
type, we wrap it as an action. Then, the simplified traces
are converted into action sequences. Finally, given all the
actions as the alphabetic in a DFA and the existing action
sequences as the training set, we adopt an off-line learning
algorithm, i.e., regular positive negative inference (RPNI)
[30], to infer a DFA from these execution traces. During the
off-line learning, human experts (the authors) are involved
to give some positive or negative counterexamples to refine
the DFA step by step.

To identify the attack type of a possibly malicious script,
we collect its execution traces and check them against these
learned attack behaviour models in the form of DFA. If any
trace is accepted by a certain DFA, the related script is
considered as an instance of this attack type. If the traces
of a script are not matched with any predefined or inferred
behaviour model, JSDC suggests that this script is probably

Figure 7: The work-flow of learning and detecting
an attack type in dynamic confirmation

System calls Actions
nsISupportsString.data
nsICommandLine.resolveURI ⇒ a
nsIObserverService.notifyObservers
nsIWebNavigation.loadURI ⇒ b
nsIScriptableUnicodeConverter.convertToByteArray ⇒ c
nsICryptoHash.update ⇒ d
nsILocalFile.append ⇒ e
nsITimer.initWithCallback ⇒ f
nsIIOService2.newURI ⇒ g
nsIScriptableUnicodeConverter.convertToInputStream
nsIBoxObject.setProperty

Figure 8: An execution trace and the actions
{a, b, c, d, e, f, g} that appear in traces of type I attack

Figure 9: The illustrative DFA of the attack of s1,
which is a part of the actual DFA of type I attack

of a new attack type, or a benign script due to false positive
cases introduced in detection.

Given a set of traces from samples of attack type I, we ex-
tract the common actions that appear in all malicious traces.
Then all traces can be represented by action sequences. For
example, the trace in Figure 8 can be represented as an
action sequence 〈a, b, c, d, e, f, g〉. Then with all these ac-
tion sequences, RPNI is applied to infer a DFA. Further
with experts’ knowledge, the refined DFA is attained and
shown in Figure 9, which generate JavaScript code dynam-
ically and exploit vulnerability of browser to download files
into user’s local file system. Given the sample s1 in Figure
3, we can capture traces that are represented as sequences
〈a, d, e, f, g〉, 〈a, b, c, d, e, f, g〉 or 〈a, b, c, b, c, d, e, f, g〉. As these
traces are accepted by the learned DFA, s1 is of type I at-
tack.

Note that for each attack type, we repeat the same work-
flow to learn an attack model in DFA. Totally, the eight
learned models are available from the JSDC web-site [9]. To
identify the possible attack type, the trace of a malicious
script needs to be iteratively checked against each of these
8 DFAs, until one matched is found or all are not matched.
The system call based behavior modelling is resistant to ob-
fuscation owing to the dynamic analysis, and applicable to
malware variants as it captures the essential behaviors of the
same attack.

6. IMPLEMENTATION
In this section, we present our implementation details.

Crawler. We use the Heritrix public domain crawler [7]
to crawl over 21,000 Internet web sites. Heritrix is a open-
source, extensible, web-scale, archival-quality web crawler
project. Heritrix is designed around the concepts of profiles
and jobs [21]. A profile is a configuration of web crawler. A
job is inherited from a profile and can override configuration
options. Jobs are queued for processing and will be picked
up by an idle crawler thread. Heritrix also supports custom
workflows.
HtmlUnit Extension to Obtain Unpacked Code. An-
alyzing JavaScript with HtmlUnit, we are able to get the un-
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packed code (without obfuscation) prior to the actual time-
consuming rendering. HtmlUnit is configured so that it does
not try to resolve external dependencies (e.g., loading exter-
nal JavaScript files or third party plugins) referred in the
analysed JavaScript. Such a configuration is to make sure
that our approach is scalable and light-weighted, since the
time taken for the analysis could be quite long if we ensure
all dependencies are fulfilled. Nevertheless, this is not a
restrictive constraint, since with our experience, most Java-
Script malware is designed to be standalone to maximize the
chance for successful attack. In some rare events where the
external dependencies affect the analysis of HtmlUnit, then
our extension falls back to the plain syntactic analysis.
AST Generation and Functional Call Pattern Ex-
traction. To build the AST of unpacked execution-ready
code, We use Mozzila Rhino 1.7 [6]—an open source Java-
Script engine. The reason to choose Rhino is due to its
fault-tolerance and performance in parsing JavaScript code.
Rhino is also integrated in HtmlUnit to build AST for the
unpacked code that is ready for execution and rendering. We
traverse the AST and extract all the function call nodes. We
apply the frequent item-set mining implemented in WEKA,
a Java-based open source machine learning toolkit [23], to
mine function call patterns.
Classifiers. In [27], four types of classifiers, namely ADTree,
Random Forest (RF), J48 and Näive Bayes (NB), have been
used to solve the malware detection problem, which is a bi-
nary classification problem (malicious or benign). In the
second phase of our approach, we are doing multi-class clas-
sification, to classify the malicious JavaScript code into eight
attack types. Thus, we reuse the three classifiers that sup-
port multi-class classification, namely RF, J48 and NB. Be-
sides, we also adopt Random Tree (RT).

All of these classifiers are available in the recent version
of WEKA. We also use default parameters set-up for these
classifiers. The detailed introduction of these classifiers is
out of the scope of this paper. We provide a brief summary
of each classifier as follows:

• RT: A classifier that build a decision tree with K ran-
domly chosen attributes at each node. It supports es-
timation of class probabilities based on a hold-out set.

• RF: A non-probabilistic classifier that uses multiple
decision trees for training, and predicting the classes
by checking the most votes over all decision trees.

• J48: A non-probabilistic classifier that uses single de-
cision tree for classification.

• NB: A probabilistic classifier based on Bayes’ theorem
with a strong (naive) independence assumptions be-
tween the features.

To address the noise due to the different ranges of feature
values and treat features fairly, WEKA automatically nor-
malizes values of all features via range and z-normalization.
To achieve the best accuracy, WEKA also supports auto-
matic feature selection algorithms.

7. EVALUATION
To test the effectiveness and efficiency of JSDC, we train

4 different classifiers mentioned in previous section with the
training data set and perform predication for the testing
data set. Particularly, controlled experiments on 20942 la-
belled scripts are conducted to evaluate the accuracy and
run-time performance of JSDC. In addition to the controlled
experiments, to exhibit the practical effectiveness, we also

Table 1: Data sets used in controlled experiments
Benign data set #samples

Alexa-top500 websites 20000

Malicious data sets #samples

Attack targeting browser vulnerabilities (type I) 150

Browser hijacking attack (type II) 28

Attack targeting Flash (type III) 81

Attack targeting JRE (type IV) 191

Attack based on multimedia (type V) 190

Attack targeting PDF reader (type VI) 101

Malicious redirecting attack (type VII) 92

Attack based on Web attack toolkits (type VIII) 109

Total 942

apply our approach on 1,400,000 unlabelled scripts to find
wild malicious ones contained in public web sites.

7.1 Data Set and Experiment Setup
The labelled data sets include 20000 benign samples and

942 malicious ones of 8 attack types, as shown in Table 1.
Our malicious data sets originate from three sources. To in-
clude the existing common samples, we collect 200 samples
of 8 attack types from well-known malware repositories VX-
Heaven [4] and another 200 samples from OpenMalware
[3]. To include the emerging and new attacks, we manu-
ally collect 542 samples from malicious websites reported by
Web Inspector [5]. We test these total 942 malicious sam-
ples with the on-line service of 54 anti-virus tools provided
on VirusTotal [11]. The results report that they are mali-
cious. For the benign data set, we crawl 20,000 scripts from
the Alexa-top500 websites1, from each of which 40 scripts are
randomly crawled. We scan them with two anti-virus tools
Avast! (version 2014.9.0.2021) and TrendMicro (version
10.4) to ensure that they are benign.

The unlabelled data sets include 1,400,000 scripts that
are crawled by Heritrix with randomly selected seeds. Here,
URLs in the list that a Web crawler starts with are called
the seeds. Our seeds include general web sites of universi-
ties, governments, companies, discussion forums, etc. The
training samples, testing samples and newly found malware
in our study can be found from the JSDC web-site [9].

Our experimental environment is a Dell optiplex 990 PC
(Intel Core i7-2600 3.40GHz, 8G memory), running Win-
dows 7 64-bit Enterprise.

7.2 Evaluation of Malware Detection

7.2.1 Detection on the Labelled Data Sets
To test the accuracy of the classifiers for the labelled data

sets, malicious and benign scripts are all mixed and then
separated into multiple partitions. To avoid possible errors
introduced in random partition of training set and testing
set, we do not split all samples into a training partition
(75%) and a predication partition (25%). Instead, we adopt
10-fold cross-validation (10-fold CV) strategy to train the 4
classifiers: RF, J48, NB and RT.

Accuracy of the trained classifiers. Table 2 shows the
accuracies of trained classifiers on the labelled data sets. The
accuracy is calculated by measuring the ratio of the number
of successful classifications to the total number of samples.
As there are more than 40 different features for classifica-

1
http://www.alexa.com/topsites
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Table 2: The accuracies of different classifiers
ML classifier Accuracy FP rate FN rate

RandomForest (RF) 99.9522% 0.2123% 0.8492%

J48 99.8615% 0.7431% 2.335%
Näive Bayes (NB) 98.2237% 1.127% 4.5280%

RandomTree (RT) 99.8758% 0.3609% 1.4862%

<!--
if(navigator.userAgent.match(/(android|midp|j2me|symbian|
series 60|symbos|windowsmobile|windowsce|ppc|smartphone|
blackberry|mtk|bada|windows phone)/i)!==null){
window.location = "http://mirolend.h19.ru/away.php?sid=5";
} //-->

Figure 10: A code example of FN cases

tion of malicious and benign scripts, we use the function of
automated searching and selection of predicate features in
WEKA. Thus, as Table 2 shows, all the four classifiers have
achieved an overall accuracy above 98%. Note that the over-
all accuracy is probably dominated by the large number of
correct classification of benign sample. Thus, checking the
specific false positive and false negative cases will provide
more insightful observations.

In Table 2, the worst classifier is Näive Bayes, whose FN
rate of malicious samples is 4.5280%. However, due to the
overwhelming percentage of benign samples, a high FN rate
(4.5%) of malicious samples does not affect the overall ac-
curacy significantly. The other three classifiers have low FP
rate. One of the FN cases for RF, J48 and RT is shown in
Figure 10. This sample belongs to malicious redirects (type
VII) and requires the client side to be a mobile device. Thus,
HtmlUnit cannot parse and unpack the code properly so that
the extracted feature vector is not accurate. Overall, the FN
of malicious samples range from 0.3500% to 4.5280% for dif-
ferent classifiers. Thus, our tool achieves a detection ratio
99.65% (the RF classifer) on the whole labelled malicious
samples. It is reasonable to get such high detection ratio, as
in 10-fold CV the different folders (partitions) are mutually
used for training and predication for each other.

Comparison with other tools. To compare the accu-
racy and performance of our approach with the state-of-the-
art tools, we consider research prototype JSand2 [13] and
other 11 popular anti-virus tools. The 11 anti-virus tools in-
clude the open-source anti-virus software ClamAV3 and the
2014 best reviewed ten anti-virus products4:—AVG, Avast!,
Bitdefender, F-Secure, Gdata, Kaspersky, McAfee,
Panda, Symantec and TrendMicro. JSand and Cla-
mAV are used in the previous study for comparison [33].
JSand is available as on-line service from this link: https://
wepawet.iseclab.org/index.php. ClamAV and the best
ten anti-virus tools are available as on-line service from Virus-
Total [11]. To enable the latest JSand 2.6 for detection, we
upload 942 malicious samples and analyse them for five times
to avoid the cached result provided by JSand 1.3.

The results are summarized in Table 3. For each malicious
sample we also count the number of tools, which succeed in
detection, among the total 54 tools provided on VirusTo-

2
JSand supports three types of results, i.e., benign, suspicious and

malicious. We consider it is detected if JSand reports suspicious or
malicious.
3
ClamAV: http://www.clamav.net/

4
2014 Best Antivirus Software Review: http://

anti-virus-software-review.toptenreviews.com/

Table 3: Detection Ratio of our approach and other
tools on labelled malicious data sets

Tool Detection % Tool Detection %

JSDC 99.68% McAfee 59.87%
Avast! 93.84% Symantec 27.28%

Kaspersky 86.31% JSAND 25.58%
Gdata 85.88% Trend 22.08%

Bitdefender 83.23% ClamAV 9.24%
F-Secure 82.38% Panda 5.31%

AVG 76.22%

tal. On average, each malicious sample is reported by 21
tools. Given any malicious sample in our labelled data sets,
usually 6 to 7 among the best reviewed ten anti-virus tools
can detect. These tools’ detection ratio ranges from 5% to
93%. Note that we are not comparing these tools to find the
best ones, but investigating the limitations of mainstream
anti-virus tools. Our goal is to find the malicious scripts
missed by JSand and the best reviewed ten anti-virus tools.
The best classifier RF in Table 2 can detect 939 out of 942
(99.68%) malicious samples. The failed cases are because of
some implementation issues relating to our HtmlUnit-based
infrastruction, which can not emulate all versions of main-
stream browsers.

7.2.2 Detection on the Unlabelled Data Set
After we get the trained classifiers from the labelled data

sets, we apply the learned model to unlabelled data sets for
predication. Among these 1,400,000 wildly crawled scripts,
the best trained classifier RF predicates 1,530 snippets as
malicious.

To verify our prediction accuracy, we randomly select 100
from 1,530 reported unique samples. We manually inspect
these 100 cases and find only 1 FP case in these 100 samples.
For the rest 99 TP cases, we test them by other tools men-
tioned in Section 7.2.1. We find 11 out of 99 TP cases are
missed by all the tools. For example, we found an exploit
to CVE-2014-1580 is missed by all the tools. Mozilla Fire-
fox before 33.0 does not properly initialize memory for GIF
images, which allows remote attackers to obtain sensitive
information from process memory via a crafted web page
that triggers a sequence of rendering operations for trun-
cated GIF data within a CANVAS element. The results in
Table 4 show individual detection ratio for each tool. The
best tool can achieve a detection ratio of 48.49%. We ob-
serve two facts: first, these tools perform much worse on the
unlabelled samples than the labelled ones. Most of the la-
belled ones are from public repositories and may have been
scanned by these tools, but unlabelled ones are new merg-
ing variants. Second, the ranking of detection ratio of these
tools in Table 3 is generally consistent with the ranking in
Table 4, although labelled and unlabelled samples are from
different origins. The above observations imply that detec-
tion of wild and emerging malware is not easy. Note that
our comparison mainly focuses on detection ratio (or FN ra-
tio) rather than FP ratio, since existing studies [18, 33] have
found that existing JavaScript malware detection tools have
low FP but high FN.

7.2.3 Performance of Malware Detection
To know the potential of our approach being an off-line

large-scale anti-virus tool or an on-line real-time scanner as
a browser plugin, we investigate the performance of each
step in malware detection.
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Table 4: Detection ratio of other tools on the 99
unique samples reported by our approach

Tool Detection% Tool Detection%

Kaspersky 48.49% McAfee 22.22%
Avast! 46.47% JSAND 10.10%
Gdata 34.34% Trend 6.06%

Bitdefender 30.30% Symantec 3.03%
F-Secure 30.30% ClamAV 2.02%

AVG 27.27% Panda 0.00%

Table 5: The running time for different classifiers

Operation Num Time(s) Avg(ms)

Feature extraction 20942 1660.7 79.3

Training(RandomForest) 20942 0.785 0.037
Training(J48) 20942 0.364 0.017
Training(Näive Bayes) 20942 0.124 0.006
Training(RandomTree) 20942 0.275 0.013

Detection(RandomForest) 1,400,000 57.4 0.041
Detection(J48) 1,400,000 26.6 0.019
Detection(Näive Bayes) 1,400,000 8.4 0.006
Detection(RandomTree) 1,400,000 19.6 0.014

As shown in Table 5, we list the time used for different
classifiers when the whole labelled data sets serve as the
training set. The main overheads come from the feature ex-
traction step. Although the total time of feature extraction
for 20942 scripts in training sets is 1660.7 seconds, the av-
erage time for each script is just 79.3 ms. As mentioned
in Section 4.3, feature extraction for effective inner and in-
ter program analysis requires the execution ready code that
is after several times of unpacking. Thus, unpacking code,
generating ASTs and doing program analysis are the major
time-consuming tasks at the step of feature extraction. How-
ever, feature extraction can be processed for only once, and
the resulting feature vectors can be stored in database for
future usage. Table 5 also lists the total training and detec-
tion time for different classifiers. For 20942 feature vectors,
the training of classifiers only need less than 1 seconds. We
can also observe that Näive Bayes classier, as the worst clas-
sifier in Table 2, exhibits the best performance—with only
0.006 ms needed for each script in detection stage. The sum
of average feature extraction time and detection time ap-
proximately provides an estimate of the scanning time for a
single script. Given the ignorable average detection time for
each script, the average feature extraction time (79.3 ms)
suggests that our approach can be used as a browser plug-in
for real-time detection of malicious JavaScript.

To further evaluate the potential of our tool being an off-
line large-scale detector, we investigate the detection time
needed for a large set of unlabelled scripts. Apart from
feature extraction time, the detection only needs up to 1-2
minutes to classify 1.5 million scripts. In the real application
of our approach for detection, we use Heritrix to crawl the
pages and, meanwhile, HtmlUnit to unpack code and extract
feature vectors. Thus, crawling and feature extraction are
processed in parallel. The detection can be accomplished
with different classifiers and different selected features.

7.3 Evaluation of Attack Type Classification
We measure the accuracy and performance of the attack

type classification on the labelled and unlabelled samples.
We further investigate when the dynamic confirmation is
needed and how it can improve the overall accuracy.

7.3.1 Accuracy of the Trained Classifiers

Table 6: The confusion matrix of using RandomFor-
est on the 942 labelled malicious samples

a b c d e f g h <–classified as

139 0 0 0 9 2 0 0 a = type I

0 23 4 0 0 0 0 1 b = type II

1 1 74 1 0 0 1 3 c = type III

0 0 2 179 9 0 1 0 d = type IV

1 0 0 0 179 10 0 0 e = type V

0 0 0 0 19 82 0 0 f = type VI

0 0 0 1 1 0 87 3 g = type VII

0 0 0 1 0 0 3 105 h = type VIII

Table 7: Attack classification on the 1530 malicious
ones detected from 1,400,000 unlabelled samples

Type type I type II type III type IV

Num 113 (7.39%) 10 (0.65%) 75 (4.90%) 253 (16.54%)

Type type V type VI type VII type VIII

Num 202 (13.20%) 101 (6.60%) 350 (22.88%) 426 (27.84%)

We adopt 10-folder CV strategy to train the 4 classifiers
(RF, J48, NB and RT) with the 942 labelled samples in Ta-
ble 1. The accuracy of these 4 classifiers is 92.14% (RF),
90.22% (J48), 83.44% (NB) and 90.13% (RT), respectively.
Table 6 shows how the 942 samples are classified into the
8 attack types according to RF. The sum of the entries on
the matrix’s main diagonal, namely 868 (92.1444%), are cor-
rectly classified samples. Among the 74 wrongly classified
samples, 19 samples of type VI are wrongly classified as type
V, while 10 of type V are wrongly classified as type VI. The
direct reason is that some samples of type V and type VI are
quite similar—their feature values show no significant differ-
ences. For the other 45 out of 74 wrongly classified cases,
we find that most of them fall into the grey zone without
a dominant certainty value for any attack type. The other
three classifiers achieve slight worse accuracies. We also ob-
serve that they have similar problems in distinguishing type
V and type VI, and classifying a number of uncertain cases.
Thus, the trained classifiers can be ready for practical us-
age if we can address the above two problems via combining
dynamic attack confirmation (see Section 7.4).

7.3.2 Predication on the Unlabelled Data Set
In Section 7.2.2, 1530 malicious samples are detected by

our approach from 1.4 million unlabelled scripts. We apply
the best trained classifiers, namely RF, to classify these sam-
ples into different attack types. The classification output is
listed in Table 7. To measure the accuracy, we manually in-
spect 10% of samples of each type (for type II and type III
that has few samples we randomly choose 10 samples). To-
tally, we check 164 samples and confirm that they are indeed
malicious. On these 164 samples, the trained RF classifier
achieves an accuracy of 87.8%, which means correctly clas-
sifying 144 out of 164 samples. Among the 20 mistakenly
classified ones, 9 samples do not belong to any of the eight
attack types and 11 samples are classified into the wrong
types. We observe that 3 wrong cases are related to type V
or VI confusion, and 9 cases fall into the grey zone. Thus,
the sole supervised classification cannot accurately predicate
the attack type of JavaScript malware, since feature values
extracted by mostly-static analysis may not characterize the
actual attack behaviors. Especially, for those cases that fall
into grey zones, we need to apply dynamic confirmation to
to analyse them by execution.
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Table 8: The certainty value and the number of sam-
ples that fall into grey zone

certainty certain# total uncertain# uncertain %

1 764 1530 766 51.31%
>0.9 854 1530 676 50.07%
>0.8 994 1530 536 44.18%
>0.7 1296 1530 234 15.29%
>0.6 1311 1530 219 14.31%

7.4 Combining Dynamic Confirmation and Ma-
chine Learning Classification

The dynamic confirmation is applied on uncertain cases
that fall into the grey zone during attack type classification.

To effectively select the uncertain cases, we investigate
how the probabilities of the predicated class are distributed
for the 1530 samples that are classified by RF in Section
7.3.2. In Table 8, we define the certainty as the dominant
one among a sample’s probabilities to be eight attack types.
For example, certainty = 1 means there exists one dominant
probability (100%) for a sample to be the related predicated
attack type. certain# refers to the number of samples with
this certainty value, i.e., 764 out of 1530 for certainty = 1.
Thus, the number of uncertain cases without a dominant
probability (uncertain#) is 766, which comprises 51.31% of
the total 1530 samples.

Accuracy of Dynamic Attack Confirmation. From
Table 8, we observe that 234 samples are without a domi-
nant probability larger than 0.7 (234 samples are in the grey
zone if certainty = 0.7). We apply the dynamic confirma-
tion on these 234 samples. As described in Section 5, we
learn a DFA for each attack type from the related ones in
the training set of 942 samples. We separately execute the
234 samples and get 10 traces for each of them. Then these
traces are used for acceptance check on the learned DFAs. If
any trace is accepted, the corresponding sample is matched
with the DFA of the compared attack type. Finally, we com-
pare the matching results with manual verification results
to measure the accuracy. Totally, the dynamic confirmation
correctly classifies 220 samples out of 234, achieving an accu-
racy of 94.02%. Among eight attack types, type I shows the
best accuracy (95%) for dynamic confirmation while type VI
shows the worst (90.91%).

Thus, dynamic confirmation alone can achieve good ac-
curacy for attack type classification. However, the problem
is that it is not scalable. It takes about 1,544 seconds to
analyse the 234 samples, i.e., averagely 6.6 seconds for each.
Among 234 samples without a certainty value larger than
0.7, RF achieves an accuracy of 67.09%. Thus, among 234
grey zone samples, dynamic confirmation can rightly classify
63 more than RF.

Performance of Attack Type Classification.
As shown in Table 9, the training step of attack type clas-

sification takes about 0.01-0.12 seconds, which does not in-
clude the time of feature extraction. The predication step
takes only about 0.001-0.05 seconds. Thus, the performance
of these 4 classifiers is quite good, owing to the compara-
tively small number of samples to be handled in attack type
classification. Besides, these classifiers also exhibit consis-
tent performance — that is a classier fast in malware detec-
tion is also fast in attack type classification. Note that the
time for feature extraction in this step is the same as that in
malware detection step, as all feature values are extracted

Table 9: Running time of different classifiers in type
classification

Operation Num Time(s) Avg(ms)

Training(RandomForest) 942 0.1 0.11
Training(J48) 942 0.12 0.13
Training(Näive Bayes) 942 0.04 0.04
Training(RandomTree) 942 0.01 0.01

Detection(RandomForest) 1530 0.05 0.0033
Detection(J48) 1530 0.01 0.0006
Detection(Näive Bayes) 1530 0.001 0.00006
Detection(RandomTree) 1530 0.02 0.001

at once. Feature extraction averagely takes 0.1 second for
each of 1530 detected malware.

With regard to the time of dynamic confirmation on 234
samples, it takes 1,544 seconds. Including the 168 seconds
used for classification (with feature extraction time for 1530
samples), it takes 1,712 seconds to finish identifying attack
types for the 1530 malware, i.e., around 1 second per mal-
ware. Thus, combining this two techniques can improve the
overall accuracy and meanwhile attain good performance.

8. DISCUSSION
Two- or one-phase machine learning classification?

A concern is that how the accuracy will be if we make two
phase classification into one—that is we do classification at
once according to samples with benign labels and labels of
eight attack types. On the 20942 training samples, the ac-
curacy of the 4 trained classifiers is 90.99% (RF), 85.74%
(J48), 77.15% (NB) and 88.27% (RT), respectively. We ex-
amine the results and find the difference for RF is not sig-
nificant. Among 20000 benign samples, only one is wrongly
classified for RF, while among 942 malicious samples, 84
are wrongly classified for RF. In contrast, 74 out of 942 are
wrongly classified in our two phase classification of RF. But
NB shows significant differences—it wrongly classifies 203
out of 942 malicious samples in one phase classification, in
contrast, this number is 156 in our two phase classification.
As the training time is almost ignorable if feature extraction
is done, we consider two phase classification is worth.

Predicative features. We find that the malware detec-
tion has some decisive features: e.g., 98% of benign scripts
use eval function only 0 or 1 times, while 87% malicious ones
use more than 2 times, and as many as 1778 times. Dur-
ing attack type classification, we observe that there are no
decisive features that can exclusively characterize a certain
attack type. Instead, we indeed find some predicative fea-
tures that can be effective in most cases. Specifically, among
our 942 training malicious samples, we observe the following
facts: 89% of Type I samples have feature changeSRC <
1; 52% of Type II have feature element.appendChild in
Figure 4 with a value>20 ; 74% of Type III have feature
eval in Figure 4 with a value>1000; 83% of Type IV have
feature GetUserAgent > 2.5; 87% of Type V have fea-
ture referenceError < 1; 74% of Type VI have feature
invisibleIframe=1, which means the frame is invisible; 79%
of Type VII have feature domAndDynamicUsageCnt <1;
67% of Type VIII have feature dynamicUsaeContentLen
>5000.

Thread to validity. First, the training sets are from
three origins: VXHeaven, OpenMalware and Web In-
spector. Thus, the collected samples directly affect the
accuracy of trained classifiers. To address this problem, we
need to further investigate the impact of sample size and rep-
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resentativeness on the results. Second, the parameters and
set-up for machine learning classifiers are the default ones.
Further investigation should be conducted to see the effects
of parameters. Lastly, the dynamic attack confirmation re-
lies on experts’ knowledge to refine the learned DFA. The
rationale of learned DFAs can affect the accuracy of attack
confirmation—checking if a trace of a sample is accepted by
the DFA of a certain attack type.

9. RELATED WORK
Since the past few years, JavaScript malware detection has

intrigued the interest of security researchers and many ap-
proaches have been proposed. Existing approaches to Java-
Script malware detection mostly rely on static analysis with
machine learning techniques or dynamic analysis with be-
havioural abnormality checking. However, beyond the mere
detection, there are few studies that focus on malware clas-
sification according to vulnerability or attack behaviors.

9.1 Machine Learning Approaches
In 2009, Likarish et al. [27] adopted 4 classifiers (i.e., NB,

ADTree, SVM and RIPPER) to detect obfuscated Java-
Script malware. The assumption of their approach is that
malware utilizes obfuscation to hide the exploits and to
evade the detection. They reported that features extracted
from the strings of obfuscated scripts can distinguish obfus-
cated (malicious) scripts from non-obfuscated (benign) ones
by machine learning classifiers. Likarish et al. acknowledged
that the false positive rate is due to obfuscated but benign
scripts, which poses threat to the assumption. However, in
our study, we use not only features on obfuscation, but also
other features on program information. By this, we can re-
duce false positive rate due to obfuscated but benign scripts.

In 2010, JSand (JavaScript Anomaly-based aNalysis and
Detection) [17] was presented to detect Drive-by Downloads
(DbD) attacks. JSand identifies 10 features characterizing
intrinsic events of a drive-by download attack, and then uses
these features for machine learning technique (NB) to detect
malicious samples. These 10 features are extracted from 4
aspects (redirection, de-obfuscation, environmental context
and exploitation) by dynamic anomaly detection with em-
ulation in HtmlUnit [1]. Different from our work, JSand
adopts dynamic analysis and fails to investigate the impact
of the different classifiers. Dynamic anomaly-based analysis
can be effective but not efficient—JSand needs 2:22 hours to
scan the Wepawet-bad dataset which consists of 531 URLs.

Also in 2010, Cujo [33] uses hybrid analysis to on-the-fly
capture program information (by static analysis) and exe-
cution traces (by dynamic analysis) of JavaScript program.
The authors explored the distinct features for heap-spraying
attacks and obfuscated attacks. But they failed to examine
features for obfuscated but benign scripts, and overlooked
classification according to vulnerabilities or attack behav-
iors as we do in this study. Note that Cujo requires exe-
cuting every script to capture dynamic features, while our
approach only executes scripts that fall into grey zone for
dynamic confirmation. Finally, Cujo takes averagely 500ms
to analyze a webpage. In contrast, JSDC takes about 80 ms
in detection per script, including 70 ms for feature extraction
and 10 ms for classification.

Later in 2011, Canali et al. [14] proposed a filter, called
Prophiler, to quickly filter out benign pages and forward
to the costly analysis tools only the suspicious pages that are
highly malicious. The filter’s detection models are learned

based on 70 features extracted from HTML contents of a
page, from the associated JavaScript code, and from the cor-
responding URL. Then, multiple classifiers, Bayes Net(BN),
J48, Logistic, RT and RF, are used to classify the malicious
and benign web-pages. For JavaScript, the FP of these clas-
sifiers is good, ranging from 0.0% to 1.7%, but the FN ranges
from 18.1% to 81%, which is worser than our approach.

In the same year, AST is used to extract characteristics
for malicious JavaScript detection [18]. Curtsinger et al. [18]
presented the tool Zozzle that predicates the benignity or
maliciousness of JavaScript by leveraging features associated
with AST contextual information. Around one to two thou-
sand of features are extracted from the hierarchical structure
and texts in ASTs, and then the classifier NB is applied. To
remove the noise due to obfuscation, Zozzle uses Detours
binary instrumentation to get the final, unpacked code for
accurate AST generation. After tuning up with different
set-up, the authors reported the FP ranges from 0.0003% to
4.5%, and the FN from 1.26% to 11.08%.

To sum up, none of the existing studies investigate the ef-
fective features for classifying JavaScript malware into var-
ious attack types as we do in this study. Additionally, we
propose to apply dynamic confirmation to the cases that fall
into grey zone in classification. By this, we can improve the
overall accuracy and meanwhile achieve scalability.

9.2 Other Detection Techniques
Various approaches have been presented to detect special-

ized JavaScript malware in line with different attacks.
Attacks of obfuscated malware. In [16], the param-

eters for dangerous functions (eval, document.write, and so
on) in web pages are processed to get 3 types of metrics
data, i.e., N-gram, entropy and word size. The metrics data
is compared with a certain threshold that is learned from
empirical study to judge the maliciousness of the correspond-
ing web page. Recently, JStill [38] detects obfuscated at-
tacks based on the observation that—JavaScript has to be
de-obfuscated before doing its malicious intention, but the
deobfuscation process inevitably invokes certain functions.

Policy violation attacks. As early as in 2005, Hal-
laraker et al. [24] monitored the JavsScript execution and
then checked the execution trace against the high-level se-
curity policies (e.g., the same-origin policy and the signed-
script policy), to detect malicious attack behaviour.

Heap spread attacks. In 2009, Egele et al. [20] man-
aged to detect heap spread attacks by checking instantiation
of shell-code strings in the heap—specifically—checking if
the string contains executable x86 code. The similar idea
is adopted in Nozzle [32], which individually examines all
objects in the heap, interpreting object content as code and
conducting a static analysis on the code to discover exploits.

JavaScript-bearing PDF documents. Tzermias et
al. [36] presents MDScan, which instrumented Firefox Spi-
derMonkey. In such way, all the allocated string objects are
scanned by the shellcode detector Nemu [31], and possible
exploits are detected. MDScan failed to address this prob-
lem completely since it only searched for legitimate Java-
Script inclusions (denoted by the /JS tag), while an attacker
can easily circumvent this by encoding the script as text and
evaluate it at runtime (e.g. via eval).

JavaScript worms. The tool Spectator [28] detects a
worm whenever a unusually long propagation chain is found.
The idea is using a web proxy to monitor the cookie session
and propagation chain for identification of worm replication.
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In [15], PathCutter adopts the idea of running an individ-
ual script in different isolated and trusted components of
web-pages. It prevents the propagation of worms by grant-
ing scripts the permission to do only legitimate operations.

10. CONCLUSION
A key to protecting user from exploitation is the rigor-

ous eliminating of malware on Internet. To this end, we
propose a method to accelerate the process of manual mal-
ware detection by suggesting potentially malware and their
attack types to an analyst or an end-user. Our method
not only learned features of maliciousness but also of attack
type. Therefore, we can tell not only presence of malware,
but malicious behaviors with attack approach information
by virtue of dynamic attack confirmation. We also demon-
strated our effectiveness and efficiency by empirical wild pre-
diction. Among over 1,400,000 scripts, we find over 1,500
malware with 8 attack types. Our detection speed is scalable
with below 80 ms per script. The attack type classification
takes around 1 second for each malware, combining machine
learning classifiers and dynamic attack confirmation.
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