
JSFox: Integrating Static and Dynamic
Type Analysis of JavaScript Programs

Tian Huat Tan¶, Yinxing Xue†, Manman Chen∗, Shuang Liu‡, Yi Yu§, Jun Sun∗
¶Acronis, Singapore, ∗SUTD, Singapore, †NTU, Singapore, ‡SIT, Singapore, §NII, Japan

Abstract—JavaScript is a dynamic programming language
that has been widely used nowadays. The dynamism has
become a hindrance of type analysis for JavaScript. Existing
works use either static or dynamic type analysis to infer vari-
able types for JavaScript. Static type analysis of JavaScript
is difficult since it is hard to predict the behavior of the lan-
guage without execution. Dynamic type analysis is usually
incomplete as it might not cover all paths of a JavaScript
program. In this work, we propose jsFox, a browser-agnostic
approach that provides integrated type analyis, based on
both static and dynamic type analysis, which enables us to
gain the merits of both types of analysis. We have made use
of the integrated type analysis for finding type issues that
could potentially lead to erroneous results. jsFox discovers
23 type issues in existing benchmark suites and real-world
Web applications.

I. Introduction
JavaScript is arguably one of the most used program-

ming languages [3], [5]. It has been supported by all
modern Web browsers. It can be executed on almost all
kinds of platforms (mobile, PC, tablets, etc.) with various
operating systems (Windows, Mac OS, Linux, etc.). Since
the advent of Web 2.0, many functionalities which were
originally implemented on the server, have migrated to
the client-side with the help of JavaScript. Nowadays,
many complicated Web applications, such as Gmail or
Google Docs, are written entirely in JavaScript.

JavaScript is a dynamic, weakly typed language with
many flexible features such as dynamic code evaluation,
function variadicity, and constructor polymorphism. This
can ease the programmer’s job for writing compact
code. Unfortunately, the freedom and dynamism of
Javascript is a double-edged sword. No compile-time
warnings are shown when variables with inconsistent
types are used. Even worse, some values are coerced
into another type, leading to incorrect behavior without
any obvious sign of misbehavior. Type analysis for
JavaScript can help mitigate these issues and improve
the development efficiency. Type analysis is crucial for
capturing representation errors, e.g., misuse a number
as the array. Moreover, type information is the basis for
program analysis methods like symbolic execution [13],
and can serve as an abstraction for analysis methods like
testing and model checking [9].

Existing works use either static [7], [14], [18] or dy-
namic [16] analysis to infer variable types in JavaScript
programs. However, both approaches have their limi-

tations. For static type analysis, the analysis is often
restricted to a subset of JavaScript language features
in order to achieve soundness. To perform analysis
for the entire JavaScript program, unsound static type
analysis has been adopted (e.g., [15]). Even so, many
dynamic features of JavaScript remain very difficult to
infer statically. Dynamic type analysis can address the
challenges caused by the dynamic features of JavaScript.
Nevertheless, unlike static type analysis, dynamic type
analysis is mostly incomplete, as dynamic execution
might not cover all program paths in the JavaScript
program.

In short, we present a novel approach that combines
static and dynamic analysis to infer types for JavaScript
programs, that could be used for various purposes such
as detecting type issues in JavaScript programs. jsFox has
been evaluated on several real-world Web applications
and a popular JavaScript benchmarks collection, i.e.,
JetStream [2], which includes benchmarks from the
SunSpider 1.0.2 [4] and Octane 2 [11]. jsFox has shown to
be effective in identifying type issues so that developers
can easily fix the problem and improve the code. There
are 23 type issues reported in existing benchmark suites
and real-world Web applications.

We summarize the contributions in the following.
• We propose an integrated type analysis for JavaScript

programs which facilitate the usage of dynamic
type analysis in refining static type analysis, for the
purpose of inferring types and finding type issues.

• We have developed jsFox, which is browser-agnostic
and targeted at all features of Javascript.

• We have evaluated our approach on popular
JavaScript benchmarks, and several real-world Web
applications. The evaluation shows that our method
have detected 23 type issues with a low false positive
rate.

II. Architecture of JSFox
The architecture of jsFox is shown in Figure 1. The

input of jsFox is a JavaScript program and the output
would be the type valuation of the JavaScript program.
The input JavaScript program is first normalized. A
JavaScript program is first normalized into a three-
address-code-like [6] format that is amenable for analysis.
The normalized program is then analyzed using static
and dynamic components of jsFox respectively. The

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.91

255

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

255

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

255

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.91

256

Fig. 1: Architecture of jsFox

output of these components will be static and dynamic
type valuations. Both kinds of type valuations are then
integrated by integrated type analysis to yield the final
type valuation.

Static component is composed of two steps: Datalog
analysis and then static type analysis. Datalog analysis
includes control flow analysis and pointer analysis. An
important part of control flow analysis is call-graph
discovery. Our proposed static analysis is field-sensitive,
flow-sensitive, context-insensitive, and path-insensitive

For dynamic component, there are also two steps:
instrumented execution and dynamic type analysis. In the
instrumented execution, we instrument the normalized
JavaScript program in order to obtain the variable values
and dynamic call graph edges. For collection of variable
values, we record the values of variables that have been
assigned at a particular line.

In the integrated type analysis, we make use of
dynamic type analysis in refining static type analysis
to make the analysis more complete and precise. It is
very hard to obtain information in the static analysis
like variadic functions. Whereas such information can
be easily obtained from dynamic analysis. Therefore,
our integrated analysis makes use of the information
from dynamic analysis to refine the static analysis. In
particular, two important pieces of information from
dynamic analysis are used to refine the static analysis.

• Dynamic call graph edges, Ed – The instrumented
program will be able to capture the call graph edges
that cannot be easily discovered by static analysis.

• Dynamic type valuation, Qd – It is the output
of dynamic type analysis. Dynamic analysis can
discover variable values that are obtained through
dynamic features of JavaScript, e.g., runtime code
evaluation.

III. Evaluation
We evaluate jsFox on popular JavaScript benchmarks

and real-world Web applications to show our efficiency.
In the following, we will present our evaluation in
details. We have implemented jsFox in C#. The parsing
and normalization of JavaScript programs are done by
Esprima [12] and JS WALA [8] respectively. We use
Z3 [10] for solving the Datalog. The JavaScript program
is instrumented with Jalangi [17].

As a baseline comparison, we compare jsFox with the
state-of-art approach presented in [16]. The approach
in [16] is based on pure dynamic analysis. We evaluate

our tool on a popular JavaScript benchmarks collection
and real-world Web applications. We introduce them in
the following:

• JetStream [2]: We use JetStream version 1.1, which
includes benchmarks from the SunSpider 1.0.2 [4]
and Octane 2 [11]. We exclude earley-boyer, typescript,
zlib and coad-load because they are obfuscated, which
makes the source code difficult to analyze. evaluated
in [16].

• Web Applications: Five real-world Web applications
are taken from open source JavaScript frameworks
and their test suites [1].

As the experiment result, we have discovered 23 type
issues, and out of them 8 cases can only be detected
by integrated type analysis. The approach in [16] has
identified 12 of them, which are all included in our
pure dynamic type analysis. We explain the reason
in the following. For dynamic type analysis, we use
different representation from [16] to record the observed
values during execution. In particular, [16] uses type
graphs, and we use lattices. Nevertheless, since both
approaches record the observation of variable values
during an execution, this makes their reasoning power
almost equivalent. In addition, there are only 5 false
positives out of 349469 lines of programs, this conveys
to us that the rate of false positive is low.

IV. Conclusion and FutureWork
In this work, we have proposed jsFox that makes use

of both integrated typing analysis – that leverages both
static and dynamic typing analysis, which allows more
precise and complete type analysis than any individual
typing analysis can obtain. We have applied our methods
in evaluating popular benchmarks and several real-world
Web applications. The typing analysis has been shown
to be able to identify 23 type issues.

As future work, we will investigate our type inference
method for other analysis methods such as symbolic
execution. In addition, we will also investigate other
methods in combining static and dynamic analysis to
provide better synergy between these analysis.

256256256257257257257257257257

References
[1] Defensive javascript. http://www.defensivejs.com/.
[2] Jetstream. http://browserbench.org/JetStream/.
[3] Language trends on github. https://github.com/blog/2047-language-

trends-on-github.
[4] Sunspider. https://webkit.org/perf/sunspider/sunspider.html.
[5] Tiobe index for april 2016. http://www.tiobe.com/tiobe index.
[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[7] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type

inference for javascript. In ECOOP 2005 - Object-Oriented Pro-
gramming, 19th European Conference, Glasgow, UK, July 25-29, 2005,
Proceedings, pages 428–452, 2005.

[8] I. T. W. R. Center. Javascript wala,
note=https://github.com/wala/JS WALA.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT
press, 1999.

[10] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS Budapest, Hungary, March 29-April
6, 2008. Proceedings, pages 337–340, 2008.

[11] G. Developers. Octane. https://developers.google.com/octane/.
[12] A. Hidayat. Esprima. http://esprima.org/.
[13] J. C. King. Symbolic execution and program testing. Communica-

tions of the ACM, 19(7):385–394, 1976.
[14] F. Logozzo and H. Venter. RATA: rapid atomic type analysis by

abstract interpretation - application to javascript optimization. In
Compiler Construction, 19th International Conference, CC 2010, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
pages 66–83, 2010.

[15] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis
of javascript applications in the presence of frameworks and
libraries. In Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013, pages 499–509, 2013.

[16] M. Pradel, P. Schuh, and K. Sen. Typedevil: Dynamic type
inconsistency analysis for javascript. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, pages 314–324, 2015.

[17] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: a
tool framework for concolic testing, selective record-replay, and
dynamic analysis of javascript. In Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, pages 615–618,
2013.

[18] T. Zhao. Polymorphic type inference for scripting languages with
object extensions. In Proceedings of the 7th Symposium on Dynamic
Languages, DLS 2011, October 24, 2011, Portland, OR, USA, pages
37–50, 2011.

257257257258258258258258258258

